Abstract
CT images corrupted by metal artifacts have serious negative effects on clinical diagnosis. Considering the difficulty of collecting paired data with ground truth in clinical settings, unsupervised methods for metal artifact reduction are of high interest. However, it is difficult for previous unsupervised methods to retain structural information from CT images while handling the non-local characteristics of metal artifacts. To address these challenges, we proposed a novel D ense T ransformer based E nhanced C oding Net work (DTEC-Net) for unsupervised metal artifact reduction. Specifically, we introduce a Hierarchical Disentangling Encoder, supported by the high-order dense process, and transformer to obtain densely encoded sequences with long-range correspondence. Then, we present a second-order disentanglement method to improve the dense sequence’s decoding process. Extensive experiments and model discussions illustrate DTEC-Net’s effectiveness, which outperforms the previous state-of-the-art methods on a benchmark dataset, and greatly reduces metal artifacts while restoring richer texture details.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Barrett, J.F., Keat, N.: Artifacts in CT: recognition and avoidance. Radiographics 24(6), 1679–1691 (2004)
Goodfellow, I., et al.: Generative adversarial networks. Commun. ACM 63(11), 139–144 (2020)
Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)
Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)
Kalender, W.A., Hebel, R., Ebersberger, J.: Reduction of CT artifacts caused by metallic implants. Radiology 164(2), 576–577 (1987)
Lemmens, C., Faul, D., Nuyts, J.: Suppression of metal artifacts in CT using a reconstruction procedure that combines map and projection completion. IEEE Trans. Med. Imaging 28(2), 250–260 (2008)
Liang, J., Cao, J., Sun, G., Zhang, K., Van Gool, L., Timofte, R.: SwinIR: image restoration using swin transformer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1833–1844 (2021)
Liao, H., Lin, W.A., Zhou, S.K., Luo, J.: ADN: artifact disentanglement network for unsupervised metal artifact reduction. IEEE Trans. Med. Imaging 39(3), 634–643 (2019)
Lin, W.A., et al.: Dudonet: dual domain network for CT metal artifact reduction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10512–10521 (2019)
Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021)
Lyu, Y., Fu, J., Peng, C., Zhou, S.K.: U-DuDoNet: unpaired dual-domain network for CT metal artifact reduction. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12906, pp. 296–306. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87231-1_29
Meyer, E., Raupach, R., Lell, M., Schmidt, B., Kachelrieß, M.: Normalized metal artifact reduction (NMAR) in computed tomography. Med. Phys. 37(10), 5482–5493 (2010)
Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)
Wang, H., Li, Y., Zhang, H., Meng, D., Zheng, Y.: Indudonet+: a deep unfolding dual domain network for metal artifact reduction in CT images. Med. Image Anal. 85, 102729 (2023)
Wang, H., Xie, Q., Li, Y., Huang, Y., Meng, D., Zheng, Y.: Orientation-shared convolution representation for CT metal artifact learning. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13436, pp. 665–675. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16446-0_63
Wang, T., et al.: Dual-domain adaptive-scaling non-local network for CT metal artifact reduction. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12906, pp. 243–253. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87231-1_24
Yan, K., Wang, X., Lu, L., Summers, R.M.: Deeplesion: automated mining of large-scale lesion annotations and universal lesion detection with deep learning. J. Med. Imaging 5(3), 036501–036501 (2018)
Yu, L., Zhang, Z., Li, X., Xing, L.: Deep sinogram completion with image prior for metal artifact reduction in CT images. IEEE Trans. Med. Imaging 40(1), 228–238 (2020)
Zhang, H., Wang, L., Li, L., Cai, A., Hu, G., Yan, B.: Iterative metal artifact reduction for x-ray computed tomography using unmatched projector/backprojector pairs. Med. Phys. 43(6Part1), 3019–3033 (2016)
Zhang, J., Zhang, Y., Gu, J., Zhang, Y., Kong, L., Yuan, X.: Accurate image restoration with attention retractable transformer. arXiv preprint arXiv:2210.01427 (2022)
Zhang, Y., Yu, H.: Convolutional neural network based metal artifact reduction in x-ray computed tomography. IEEE Trans. Med. Imaging 37(6), 1370–1381 (2018)
Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution using very deep residual channel attention networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 294–310. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_18
Zhang, Y., Tian, Y., Kong, Y., Zhong, B., Fu, Y.: Residual dense network for image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2472–2481 (2018)
Zhao, B., Li, J., Ren, Q., Zhong, Y.: Unsupervised reused convolutional network for metal artifact reduction. In: Yang, H., Pasupa, K., Leung, A.C.-S., Kwok, J.T., Chan, J.H., King, I. (eds.) ICONIP 2020. CCIS, vol. 1332, pp. 589–596. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-63820-7_67
Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)
Acknowledgements
This research work was undertaken in the context of Horizon 2020 MSCA ETN project “xCTing” (Project ID: 956172).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Xie, W., Blaschko, M.B. (2023). Dense Transformer based Enhanced Coding Network for Unsupervised Metal Artifact Reduction. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14220. Springer, Cham. https://doi.org/10.1007/978-3-031-43907-0_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-43907-0_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-43906-3
Online ISBN: 978-3-031-43907-0
eBook Packages: Computer ScienceComputer Science (R0)