Skip to main content

Dense Transformer based Enhanced Coding Network for Unsupervised Metal Artifact Reduction

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

CT images corrupted by metal artifacts have serious negative effects on clinical diagnosis. Considering the difficulty of collecting paired data with ground truth in clinical settings, unsupervised methods for metal artifact reduction are of high interest. However, it is difficult for previous unsupervised methods to retain structural information from CT images while handling the non-local characteristics of metal artifacts. To address these challenges, we proposed a novel D ense T ransformer based E nhanced C oding Net work (DTEC-Net) for unsupervised metal artifact reduction. Specifically, we introduce a Hierarchical Disentangling Encoder, supported by the high-order dense process, and transformer to obtain densely encoded sequences with long-range correspondence. Then, we present a second-order disentanglement method to improve the dense sequence’s decoding process. Extensive experiments and model discussions illustrate DTEC-Net’s effectiveness, which outperforms the previous state-of-the-art methods on a benchmark dataset, and greatly reduces metal artifacts while restoring richer texture details.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    spineweb.digitalimaginggroup.ca.

References

  1. Barrett, J.F., Keat, N.: Artifacts in CT: recognition and avoidance. Radiographics 24(6), 1679–1691 (2004)

    Article  Google Scholar 

  2. Goodfellow, I., et al.: Generative adversarial networks. Commun. ACM 63(11), 139–144 (2020)

    Article  MathSciNet  Google Scholar 

  3. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  4. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  5. Kalender, W.A., Hebel, R., Ebersberger, J.: Reduction of CT artifacts caused by metallic implants. Radiology 164(2), 576–577 (1987)

    Article  Google Scholar 

  6. Lemmens, C., Faul, D., Nuyts, J.: Suppression of metal artifacts in CT using a reconstruction procedure that combines map and projection completion. IEEE Trans. Med. Imaging 28(2), 250–260 (2008)

    Article  Google Scholar 

  7. Liang, J., Cao, J., Sun, G., Zhang, K., Van Gool, L., Timofte, R.: SwinIR: image restoration using swin transformer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1833–1844 (2021)

    Google Scholar 

  8. Liao, H., Lin, W.A., Zhou, S.K., Luo, J.: ADN: artifact disentanglement network for unsupervised metal artifact reduction. IEEE Trans. Med. Imaging 39(3), 634–643 (2019)

    Article  Google Scholar 

  9. Lin, W.A., et al.: Dudonet: dual domain network for CT metal artifact reduction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10512–10521 (2019)

    Google Scholar 

  10. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021)

    Google Scholar 

  11. Lyu, Y., Fu, J., Peng, C., Zhou, S.K.: U-DuDoNet: unpaired dual-domain network for CT metal artifact reduction. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12906, pp. 296–306. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87231-1_29

    Chapter  Google Scholar 

  12. Meyer, E., Raupach, R., Lell, M., Schmidt, B., Kachelrieß, M.: Normalized metal artifact reduction (NMAR) in computed tomography. Med. Phys. 37(10), 5482–5493 (2010)

    Article  Google Scholar 

  13. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  14. Wang, H., Li, Y., Zhang, H., Meng, D., Zheng, Y.: Indudonet+: a deep unfolding dual domain network for metal artifact reduction in CT images. Med. Image Anal. 85, 102729 (2023)

    Article  Google Scholar 

  15. Wang, H., Xie, Q., Li, Y., Huang, Y., Meng, D., Zheng, Y.: Orientation-shared convolution representation for CT metal artifact learning. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13436, pp. 665–675. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16446-0_63

    Chapter  Google Scholar 

  16. Wang, T., et al.: Dual-domain adaptive-scaling non-local network for CT metal artifact reduction. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12906, pp. 243–253. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87231-1_24

    Chapter  Google Scholar 

  17. Yan, K., Wang, X., Lu, L., Summers, R.M.: Deeplesion: automated mining of large-scale lesion annotations and universal lesion detection with deep learning. J. Med. Imaging 5(3), 036501–036501 (2018)

    Article  Google Scholar 

  18. Yu, L., Zhang, Z., Li, X., Xing, L.: Deep sinogram completion with image prior for metal artifact reduction in CT images. IEEE Trans. Med. Imaging 40(1), 228–238 (2020)

    Article  Google Scholar 

  19. Zhang, H., Wang, L., Li, L., Cai, A., Hu, G., Yan, B.: Iterative metal artifact reduction for x-ray computed tomography using unmatched projector/backprojector pairs. Med. Phys. 43(6Part1), 3019–3033 (2016)

    Google Scholar 

  20. Zhang, J., Zhang, Y., Gu, J., Zhang, Y., Kong, L., Yuan, X.: Accurate image restoration with attention retractable transformer. arXiv preprint arXiv:2210.01427 (2022)

  21. Zhang, Y., Yu, H.: Convolutional neural network based metal artifact reduction in x-ray computed tomography. IEEE Trans. Med. Imaging 37(6), 1370–1381 (2018)

    Article  Google Scholar 

  22. Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution using very deep residual channel attention networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 294–310. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_18

    Chapter  Google Scholar 

  23. Zhang, Y., Tian, Y., Kong, Y., Zhong, B., Fu, Y.: Residual dense network for image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2472–2481 (2018)

    Google Scholar 

  24. Zhao, B., Li, J., Ren, Q., Zhong, Y.: Unsupervised reused convolutional network for metal artifact reduction. In: Yang, H., Pasupa, K., Leung, A.C.-S., Kwok, J.T., Chan, J.H., King, I. (eds.) ICONIP 2020. CCIS, vol. 1332, pp. 589–596. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-63820-7_67

    Chapter  Google Scholar 

  25. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)

    Google Scholar 

Download references

Acknowledgements

This research work was undertaken in the context of Horizon 2020 MSCA ETN project “xCTing” (Project ID: 956172).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wangduo Xie .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 619 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xie, W., Blaschko, M.B. (2023). Dense Transformer based Enhanced Coding Network for Unsupervised Metal Artifact Reduction. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14220. Springer, Cham. https://doi.org/10.1007/978-3-031-43907-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43907-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43906-3

  • Online ISBN: 978-3-031-43907-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics