Skip to main content

An Efficient Approach Based on Graph Neural Networks for Predicting Wait Time in Job Schedulers

  • Conference paper
  • First Online:
Job Scheduling Strategies for Parallel Processing (JSSPP 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14283))

Included in the following conference series:

  • 186 Accesses

Abstract

The objective of this study is to predict the wait time in job schedulers with high accuracy. Job executions in supercomputers or data centers are typically managed by job schedulers to efficiently utilize computing resources. A possible disadvantage is that, depending on resource availability and scheduling policy, the job waits for a long time before being executed. Therefore, providing the predicted wait time for individual jobs can contribute to the users’ research planning. Additionally, the job wait time potentially becomes an important input for the scheduling policy. However, the prediction of the job wait time is a challenging task because the state of the scheduling system changes dynamically by many uncertainty factors. To address this problem, a graph neural network architecture of deep learning, which is a novel approach for processing job information in the scheduler, was employed in this study. Our experiments using real historical logs confirmed that the proposed deep learning model achieved 0.3–7.9% higher prediction accuracy compared to the boosted decision tree and multi-layer perceptron models. An extensive analysis of the proposed deep learning model was performed to improve the explainability of the experimental results. In particular, the visualization of attention weights in the graph neural network expanded our understanding of the behavior of the proposed deep learning model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Catalina scheduler. https://www.sdsc.edu/catalina/. Accessed 30 Nov 2022

  2. Cobalt scheduler. https://trac.mcs.anl.gov/projects/cobalt/. Accessed 30 Nov 2022

  3. Deepbatch. https://github.com/ktomoe/deepbatch/. Accessed 16 Dec 2022

  4. Maui scheduler. http://docs.adaptivecomputing.com/maui/. Accessed 30 Nov 2022

  5. Parallel workloads archive. https://www.cs.huji.ac.il/labs/parallel/workload/index.html. Accessed 30 Nov 2022

  6. Battaglia, P.W., et al.: Relational inductive biases, deep learning, and graph networks (2018). https://doi.org/10.48550/ARXIV.1806.01261, https://arxiv.org/abs/1806.01261

  7. Bos, K., et al.: LHC computing grid: technical design report. version 1.06 (20 Jun 2005), Technical design report, LCG, CERN, Geneva (2005). http://cds.cern.ch/record/840543

  8. Brody, S., Alon, U., Yahav, E.: How Attentive are Graph Attention Networks? In: International Conference on Learning Representations (2022). https://openreview.net/forum?id=F72ximsx7C1

  9. Brown, N., Gibb, G., Belikov, E., Nash, R.: Predicting batch queue job wait times for informed scheduling of urgent HPC workloads (2022). https://doi.org/10.48550/ARXIV.2204.13543, https://arxiv.org/abs/2204.13543

  10. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794. KDD 2016, ACM, New York (2016). https://doi.org/10.1145/2939672.2939785

  11. Feitelson, D.G., Tsafrir, D., Krakov, D.: Experience with using the parallel workloads archive. J. Parallel Distrib. Comput. 74(10), 2967–2982 (2014). https://doi.org/10.1016/j.jpdc.2014.06.013. www.sciencedirect.com/science/article/pii/S0743731514001154

    Article  Google Scholar 

  12. Gombert, L., Suter, F.: Learning-based approaches to estimate job wait time in HTC datacenters. In: Klusáček, D., Cirne, W., Rodrigo, G. (eds.) 24th Workshop on Job Scheduling Strategies for Parallel Processing. Job Scheduling Strategies for Parallel Processing. JSSPP 2021, vol. 12985, pp. 101–125. Portland, United States (2021). https://doi.org/10.1007/978-3-030-88224-2_6, https://hal.archives-ouvertes.fr/hal-03357129

  13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition (2015). https://doi.org/10.48550/ARXIV.1512.03385, https://arxiv.org/abs/1512.03385

  14. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Proceedings of the 32nd International Conference on International Conference on Machine Learning - Volume 37, p. 448–456. ICML 2015, JMLR.org (2015)

    Google Scholar 

  15. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2017)

  16. Klusáček, D., Chlumský, V.: Evaluating the impact of soft walltimes on job scheduling performance. In: Klusáček, D., Cirne, W., Desai, N. (eds.) Job Scheduling Strategies for Parallel Processing, pp. 15–38. Springer International Publishing, Cham (2019)

    Chapter  Google Scholar 

  17. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017). https://doi.org/10.1145/3065386

    Article  Google Scholar 

  18. Li, H., Groep, D., Wolters, L.: Efficient response time predictions by exploiting application and resource state similarities. In: The 6th IEEE/ACM International Workshop on Grid Computing, p. 8 (2005). https://doi.org/10.1109/GRID.2005.1542747

  19. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol.32, pp. 8024–8035. Curran Associates, Inc. (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

  20. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition (2014). https://doi.org/10.48550/ARXIV.1409.1556, https://arxiv.org/abs/1409.1556

  21. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(56), 1929–1958 (2014). http://jmlr.org/papers/v15/srivastava14a.html

    MathSciNet  MATH  Google Scholar 

  22. Thain, D., Tannenbaum, T., Livny, M.: Distributed computing in practice: the condor experience. Concurrency Pract. Experience 17(2–4), 323–356 (2005)

    Article  Google Scholar 

  23. Tsafrir, D., Etsion, Y., Feitelson, D.G.: Backfilling using system-generated predictions rather than user runtime estimates. IEEE Trans. Parallel Distrib. Syst. 18(6), 789–803 (2007). https://doi.org/10.1109/TPDS.2007.70606

    Article  Google Scholar 

  24. Vaswani, A., et al.: Attention is all you need. In: Guyon, I., (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. (2017). https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

  25. Wang, M., et al.: Deep graph library: a graph-centric, highly-performant package for graph neural networks. arXiv preprint arXiv:1909.01315 (2019)

  26. Wang, Q., Zhang, H., Qu, C., Shen, Y., Liu, X., Li, J.: RLSchert: an HPC job scheduler using deep reinforcement learning and remaining time prediction. Appl. Sci. 11(20), 9448 (2021). https://doi.org/10.3390/app11209448. https://www.mdpi.com/2076-3417/11/20/9448

    Article  Google Scholar 

  27. Yoo, A.B., Jette, M.A., Grondona, M.: Slurm: simple Linux utility for resource management. In: Feitelson, D., Rudolph, L., Schwiegelshohn, U. (eds.) Job Scheduling Strategies for Parallel Processing, pp. 44–60. Springer, Berlin Heidelberg, Berlin, Heidelberg (2003)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoe Kishimoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kishimoto, T., Nakamura, T. (2023). An Efficient Approach Based on Graph Neural Networks for Predicting Wait Time in Job Schedulers. In: Klusáček, D., Corbalán, J., Rodrigo, G.P. (eds) Job Scheduling Strategies for Parallel Processing. JSSPP 2023. Lecture Notes in Computer Science, vol 14283. Springer, Cham. https://doi.org/10.1007/978-3-031-43943-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43943-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43942-1

  • Online ISBN: 978-3-031-43943-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics