Skip to main content

Largest Repetition Factorization of Fibonacci Words

  • Conference paper
  • First Online:
String Processing and Information Retrieval (SPIRE 2023)

Abstract

A factorization of a string w is said to be a repetition factorization of w if every factor in the factorization is a repetition (i.e., the factor has a period shorter than or equal to the half of its length). Inoue et al. [TOCS 2022] showed how to compute the largest/smallest repetition factorization of a given string w of length n in \(O(n \log n)\) time and O(n) space, by reducing the problems to the longest/shortest path problems on the repetition graph built on w. Inoue et al. also considered repetition factorizations on Fibonacci words, and posed a conjecture on the size \(S_{F_k}\) of the largest repetition factorization of the k-th Fibonacci word \(F_k\). In this work, we provide a complete proof for this problem, by showing that \(S_{F_k}\) is given by the recurrence \(S_{F_k} = S_{F_{k-1}} + S_{F_{k-2}} + 1\) for every \(k \ge 15\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, K.T., Fox, R.H., Lyndon, R.C.: Free differential calculus. IV. The quotient groups of the lower central series. Ann. Math. 68(1), 81–95 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  2. Dumitran, M., Manea, F., Nowotka, D.: On prefix/suffix-square free words. In: Iliopoulos, C., Puglisi, S., Yilmaz, E. (eds.) SPIRE 2015. LNCS, vol. 9309, pp. 54–66. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23826-5_6

    Chapter  Google Scholar 

  3. Iliopoulos, C.S., Moore, D., Smyth, W.: A characterization of the squares in a Fibonacci string. Theor. Comput. Sci. 172(1), 281–291 (1997). https://doi.org/10.1016/S0304-3975(96)00141-7. https://www.sciencedirect.com/science/article/pii/S0304397596001417

  4. Inoue, H., Matsuoka, Y., Nakashima, Y., Inenaga, S., Bannai, H., Takeda, M.: Factorizing strings into repetitions. Theory Comput. Syst. 66(2), 484–501 (2022). https://doi.org/10.1007/s00224-022-10070-3

  5. Lothaire, M.: Combinatorics on Words. Addison-Wesley, Boston (1983)

    MATH  Google Scholar 

  6. Matsuoka, Y., Inenaga, S., Bannai, H., Takeda, M., Manea, F.: Factorizing a string into squares in linear time. In: Proceedings of the CPM 2016, pp. 27:1–27:12 (2016)

    Google Scholar 

  7. Navarro, G.: Indexing highly repetitive string collections, part I: repetitiveness measures. ACM Comput. Surv. 54(2), 29:1–29:31 (2022). https://doi.org/10.1145/3434399

  8. Navarro, G., Ochoa, C., Prezza, N.: On the approximation ratio of ordered parsings. IEEE Trans. Inf. Theory 67(2), 1008–1026 (2021). https://doi.org/10.1109/TIT.2020.3042746

    Article  MathSciNet  MATH  Google Scholar 

  9. Storer, J., Szymanski, T.: Data compression via textual substitution. J. ACM 29(4), 928–951 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  10. Welch, T.A.: A technique for high performance data compression. IEEE Comput. 17, 8–19 (1984)

    Article  Google Scholar 

  11. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE Trans. Inf. Theory IT-23(3), 337–349 (1977)

    Google Scholar 

  12. Ziv, J., Lempel, A.: Compression of individual sequences via variable-length coding. IEEE Trans. Inf. Theory 24(5), 530–536 (1978)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the comments of anonymous reviewers for improving our paper. This work was supported by JSPS KAKENHI Grant Numbers JP21K17705, JP23H04386 (YN), JP22H03551 (SI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaisei Kishi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kishi, K., Nakashima, Y., Inenaga, S. (2023). Largest Repetition Factorization of Fibonacci Words. In: Nardini, F.M., Pisanti, N., Venturini, R. (eds) String Processing and Information Retrieval. SPIRE 2023. Lecture Notes in Computer Science, vol 14240. Springer, Cham. https://doi.org/10.1007/978-3-031-43980-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43980-3_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43979-7

  • Online ISBN: 978-3-031-43980-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics