
Optimally Computing Compressed Indexing
Arrays Based on the Compact Directed Acyclic

Word Graph

Hiroki Arimura1, Shunsuke Inenaga2, Yasuaki Kobayashi1, Yuto Nakashima2,
and Mizuki Sue1

1 Graduate School of IST, Hokkaido University, Japan
{arim,sue}@ist.hokudai.ac.jp[0000−0002−2701−0271]

koba@ist.hokudai.ac.jp[0000−0003−3244−6915]

2 Department of Informatics, Kyushu University, Japan
inenaga@inf.kyushu-u.ac.jp[0000−0002−1833−010X]

nakashima.yuto.003@m.kyushu-u.ac.jp[0000−0001−6269−9353]

Abstract. In this paper, we present the first study of the computational
complexity of converting an automata-based text index structure, called
the Compact Directed Acyclic Word Graph (CDAWG), of size e for a
text T of length n into other text indexing structures for the same text,
suitable for highly repetitive texts: the run-length BWT of size r, the
irreducible PLCP array of size r, and the quasi-irreducible LPF array of
size e, as well as the lex-parse of size O(r) and the LZ77-parse of size z,
where r, z ⩽ e. As main results, we showed that the above structures can
be optimally computed from either the CDAWG for T stored in read-only
memory or its self-index version of size e without a text in O(e) worst-
case time and words of working space. To obtain the above results, we
devised techniques for enumerating a particular subset of suffixes in the
lexicographic and text orders using the forward and backward search on
the CDAWG by extending the results by Belazzougui et al. in 2015.

Keywords: Highly-repetitive text · suffix tree · longest common prefix

1 Introduction

Backgrounds. Compressed indexes for repetitive texts, which can compress
a text beyond its entropy bound, have attracted a lot of attention in the last
decade in information retrieval [13]. Among them, the most popular and powerful
compressed text indexing structures [13] are the run-length Burrows-Wheeler
transformation (RLBWT) [13] of size r, the Lempel-Ziv-parse (LZ-parse) [14] of
size z, and finally the Compact Directed Acyclic Word Graph (CDAWG) [5] of
size e. It is known [13] that their size parameters r, z, and e can be much smaller
than the information theoretic upperbound of a text for highly-repetitive texts
such as collections of genome sequences and markup texts [13]. Among these
repetition-aware text indexes, we focus on the CDAWG for a text T , which is
a minimized compacted finite automaton with e transitions for the set of all

1

ar
X

iv
:2

30
8.

02
26

9v
1

 [
cs

.D
S]

 4
 A

ug
 2

02
3

{arim,sue}@ist.hokudai.ac.jp
koba@ist.hokudai.ac.jp
inenaga@inf.kyushu-u.ac.jp
nakashima.yuto.003@m.kyushu-u.ac.jp

2 H. Arimura et al.

suffixes of T [5]; It is the edge-labeled DAG obtained from the suffix tree for T
by merging all isomorphic subtrees [8], and can be constructed from T in linear
time and space [13]. The relationships between the size parameters r, z, and e of
the RLBWT, LZ-parse, and CDAWG has been studied by, e.g. [2,4,6,11,12,15];
However, it seems that the actual complexity of conversion the CDAWG into
the other structures in sublinear time and space has not been explored yet [13].

Research goal and main results. In this paper, we study for the first time
the conversion problem from the CDAWG for T into the following compressed
indexing structures for T :

(i) the run-length BWT (RLBWT) [13] of size r ⩽ e;

(ii) the irreducible permuted longest common prefix (PLCP) array [9] of size r;

(iii) the quasi-irreducible longest previous factor (LPF) array [7] of size e (Sec. 2);

(iv) the lex-parse [14] with size at most 2r = O(r); and

(v) LZ-parse [14] with size z ⩽ e.

After introducing some notions and techniques, we present in Sec. 4 and 5
efficient algorithms for solving the conversion problem from the CDAWG into the
aforementioned compressed indexing structures. We obtain the following results.

Main results (Thm. 4.1, 5.1, and 5.2). For any text T of length n over
an integer alphabet Σ, we can solve the conversion problems from the CDAWG
G of size e for T into the above compressed index array structures (i)–(v) for
the same text in O(e) worst-case time using O(e) words of working space, where
an input G is given in the form of either the CDAWG of size e for T stored in
read-only memory, or its self-index version [3, 16] of size O(e) without a text.

Techniques. To obtain the above results, we devise in Sec. 3 techniques for
enumerating a canonical subset of suffixes in the lexicographic and text orders
using the forward and backward DFS on the CDAWG by extending by [4].

Related Work. On the relationships between parameters r, z, and z
against the text length n, Belazzougui and Cunial [4] have shown that r ⩽ e
and z ⩽ e hold. Kempa [10] showed that the compressed PLCP and CSA and
LZ-parse can be computed in O(n/ logσ n + r polylog(n)) time and space from
RLBWT-based index of size r and T . It is shown by [11] that the RLBWT of
size r for T can be computed from the LZ77-parse of size z for the same text in
r = O(z polylog(n)) time and space and r = O(z log2 n). Concerning to conver-
sion from the CDAWG G for T , we observe that G can be converted into the
LZ78-parse of size z78 ≥ z in O(e+ z78 log z78) time and space via an O(e)-sized
grammar [3] on G [2]. Discussions. For some texts, e can be as small as r or z
although e can be polynomially larger than z for other texts [11]. For the class
of Thue-Morse words, 3 Radoszewski and Rytter [15] showed that e = O(log n),
while Brlek et al. [6, Theorem 2] showed that r = Θ(log n). Hence, for such
a class, there is a chance that our O(e)-time method can run as fast as other
O(r polylog(n))-time methods for some conversion problem. On the contrary,
Mantaci et al. [12] showed that e = Θ(log n) and r = O(1) for Fibonacci words.

3 The n-th Thue-Morse word is τn = φn(0) for the morphism φ(0) = 01 and φ(1) = 10.

Optimally Computing Compressed Indexing Arrays 3

2 Preliminaries

We prepare the necessary notation and definitions in the following sections. For
precise definitions, see the literature [8, 13] or the full paper [1].

Basic definitions and notation. For any integers i ⩽ j, the notation
[i · ·j] or i · ·j denotes the interval {i, i + 1, . . . , j} of integers, and [n] denotes
{1, . . . , n}. For a string S[1 · ·n] = S[1] · · ·S[n] of length n and any i ⩽ j, we
denote S[i · ·j] = S[i]S[i+ 1] · · ·S[j]. Then, S[1 · ·j], S[i · ·j], and S[i · · |S|] are a
prefix, a factor, and a suffix of S, resp. The reversal of S is S−1 = S[n] · · ·S[1].
Throughout, we assume a string T [1 · ·n] ∈ Σn, , called a text, over an alphabet
Σ with symbol order ⩽Σ , which is terminated by the end-marker T [n] = ‘$’ such
that $≼lex a for ∀a ∈ Σ. Suf(T) = {T1, . . . , Tn} ⊆ Σ+ denotes the set of all of
n non-empty suffixes of T , where Tp := T [p · ·n] is the p-th suffix with position
p. For any suffix S ∈ Σ∗ in Suf(T), we define: (i) pos(S) := n + 1 − |S| gives
the starting position S. (ii) rnk(S) gives the lexicographic rank of S in Suf(T).
lcp(X,Y) denotes the length of the longest common prefix of strings X and Y .
In what follows, we refer to any suffix as S, any factors of T as X,Y, U, L, P, . . .,
nodes of a graph as v, w, . . ., and edges as f, g, . . ., which are possibly subscripted.

String order and extension. A string order is any total order ≼ over

strings in Σ∗. Its co-relation ≼co is defined by X ≼co Y
def⇔ X−1 ≼ Y −1. The

order ≼ is said to be extensible if ∀a ∈ Σ,∀X,Y ∈ Σ∗, aX ≼ aY ⇔ X ≼
Y , and co-extensible if its co-order ≼co is extensible.4 We denote by ≼lex the
lexicographic order over Σ∗ extending ⩽Σ over Σ, and by ≼pos the text order
defined as: X ≼pos Y ⇔ |X| ≥ |Y |. Both of ≼pos and ≼lex are extensible [14],
while ≼pos is co-extensible. A factor X in T is left-maximal if we can prepend
some symbols to X without changing the set of its end-positions in T [4, 5].

Compact directed acyclic word graph. We assume that the reader is
familiar with the suffix tree and the CDAWG [5,8]. The suffix tree [8] for a text
T [1 · ·n], denoted by Stree(T), is the compacted trie for the set Suf(T) of all
suffixes of T . The CDAWG [5] for a text T , denoted CDAWG(T), is an edge-
labeled DAG G = (V, E, suf , root , sink) obtained from Stree(T) by merging all
the isomorphic subtrees, where V, E, and suf are sets of nodes, labeled edges, and
suffix links, N−(v) and N+(v), resp., denotes the sets of incoming and outgoing
edges at node v. root and sink ∈ V are the distinguished nodes with |N−(v)| = 0
and |N+(v)| = 0, resp. Each edge f = (v,X,w) goes from node src(f) = v to
node dst(f) = w with string label lab(v) = X ∈ Σ+. Path(u, v) denotes the set
of all paths from node u to node v, whose elements are called u-to-v paths. We
denote the size of G by e := eR + eL, where eR := |E(G)| and eL := |suf G|. The
CDAWG can be stored in O(e) words of space by representing each edge label
by its length and a pointer to T . In Fig. 1, we show examples of the suffix tree
and the CDAWG for the same text T = aabaababb over Σ = {a, b, $}.

Indexing arrays. SA, PLCP,LPF ∈ [n]n and BWT ∈ Σn denote the
suffix [13], permuted longest common prefix [9], longest previous factor [7], and
the BWT arrays for a text T [1 · ·n]: for any rank k and position p ∈ [n], SA[k]

4 Our extensible order seems slightly different from [14], but essentially the same.

4 H. Arimura et al.

text T=aabaababb$

0 1'*' 3'a'

14

'b'

17'$'

2

76
'aba'

10

12'b'

4

9

5

11

'ababb$'

'bb$'

8

'ababb$'

'bb$'

13

'ababb$'
'bb$'

15

'a'

'b$'

16
'a'

'b$'

'$'

text T=aabaababb$

0 1'*' 2

6
'ababb$'

'bb$'

12 'b$'
'a'

3
'aba'

'b'

14
'$'

'b$'

'a'

'$'

'a'

'b'

text T=aabaababb$

0 1'*' 2

6
'ababb$'

'bb$'

12 'b$'
'a'

3
'aba'

'b'

14
'$'

'b$'

'a'

'$'

'a'

'b'

Fig. 1: Suffix tree (left) and CDAWG (middle, right) for T = aabaababb$. Thick
and dashed lines indicate (−)- and (+)-primary edges forming the forward and
backward search trees T− and T+ in Sec. 3, resp. Red lines indicate suffix links.

stores the position p of the suffix with rank k; BWT [k] is T [n] if SA[k] =
1 and T [SA[k] − 1] otherwise; PLCP [p] is 0 if p = SA[1] and lcp(Tp, Tq) for
q = SA[SA−1[p] − 1] otherwise; LPF [p] is max({lcp(Tp, Tq) | Tq ≼pos Tp, q ∈
[n]} ∪ {0}). RLBWT is the run-length encoded BWT . The irreducible PLCP
is obtained from PLCP by sampling such rank-value pairs (p, PLCP [p]) that
the rank i = SA−1[p] satisfies BWT [i] ̸= BWT [k − 1]. The lex-parse [14] and
LZ-parse [14] of T are obtained from PLCP and LPF , resp., as the partition
T = F1 . . . Fu of T with u phrases Fi = T [pi · ·pi + ℓi − 1] such that p1 = 1 and
ℓi = max(L[pi], 1),∀i ∈ [u], where L is either PLCP or LPF .

3 Techniques

We introduce novel techniques for generating elements of a compressed indexing
array using so-called canonical suffixes in ≼lex and ≼pos based on the forward
and backward DFS on the CDAWG by extending the results by et al. [3, 4].

Our approach. We employ the one-to-one correspondence between all of n
root-to-sink paths in Path(G) and all of n non-empty suffixes of T in Suf(T) ⊆
Σ∗. Due to the determinism of CDAWG(T) as a DFA [5], we can interchangeably
use a path π = (f1, . . . , fk) in Path(G) and a factoring S = X1 . . . Xk = str(π)
of a suffix S in Suf(T), where Xi = lab(fi) for all i ∈ [k].5

A basic idea of our approach for computing a sparse indexing array Ã :
Dom → Range with domain Dom is to represent Ã as the graph

Ã = { (idx(S), val(S)) | S ∈ S } ⊆ Dom×Range (1)

of array Ã with the set of indexes { idx(S) | S ∈ S } using a combination of

(i) a subset S ⊆ Path(G) of root-to-sink paths,

(ii) a mapping idx : S → Dom that assigns the index, and

(iii) a mapping val : S → Range that assigns the value.

For actual computation of Ã on the CDAWG G for T , we make the DFS
based on a pair Π = (≼–,≼+) = (≼pos,≼lex) of ordering over paths of G. Two

5 The correspondence between Path(G) and Suf(T) can be extended to that between
all root-to-node paths in G and all right-maximal factors [5] of T , but not used here.

Optimally Computing Compressed Indexing Arrays 5

ordering have different roles. For example, if we want to compute the run-length
BWT for T (Sec. 4), the set of primary edges (in the sense of [5]) w.r.t. the first
ordering ≼pos defines a spanning tree T over G from the root, whereas the second
ordering ≼lex specifies the order of traversal. Finally, the set of secondary edges
w.r.t. ≼pos provides a collection C of target values to seek in the DFS. Actually,
we can extract an equal-letter run from each secondary edge in constant time.

On the contrary, if we want to compute the sparse version of LPF array
(Sec. 5), we make the backward DFS of G from the sink based on the pair
Π = (≼pos,≼pos). Then, the set of primary edges w.r.t. the second ordering
≼pos defines a spanning tree, the first ordering ≼pos specifies the text order, and
the set of secondary edges w.r.t. the first ordering ≼pos provides a collection of
target values, which are the LCP values of neighboring suffixes. The PLCP array
can be computed in a similar manner, but with the pair Π = (≼pos,≼lex).

Ordered CDAWGs. We assume a pair Π = (≼–,≼+) of co-extensible
and extensible string orders, where ≼– and ≼+ are called upper and lower path
orders, resp. The ordered CDAWG for T under a pair Π = (≼–,≼+) of path
orders, denoted by G = CDAWG(T ;≼–,≼+), is the CDAWG G for T whose
incoming and outgoing edges are ordered by edge orderings (⩽E

−,⩽
E
+) compatible

with path orders defined as follows. In what follows, for any node v, each sign
δ ∈ {−,+} indicates the side of G, where the prefix (−)- reads “upper,” while
(+)- reads “upper” in what follows.

Upper/lower sets and their representatives. Consider the sets U−(v) :=
{ str(π) | π ∈ Path(root(G), v) } and U+(v) := { str(π) | π ∈ Path(v, sink(G)) } ⊆
Σ∗ of prefixes and suffixes of all root-to-sink paths.6 Each member of U− and
U+ are called upper and lower paths, resp. For any δ ∈ {−,+}, we define the
δ-representative of the set Uδ by the smallest element reprδ(v) of Uδ(v) under
≼δ, i.e., reprδ(v) := min≼δ

Uδ(v); For example, repr–(v) is the longest strings
in U−(v) and repr+(v) is the lex-first string in U+(v) under Π(≼pos,≼lex).

Remark 3.1. For any δ ∈ {−,+}, for any P ∈ Uδ(v), P = reprδ(v), if and
only if P consists of E⋆

δ -edges only. Furthermore, any factor P is left-maximal
if and only if P = repr–(v) for some node v under ≼– = (≼pos).

Compatible Edge orderings. Under the pair Πpos
lex = (≼pos,≼lex) of path

orderings, we define the pair Γ pos
lex = (⩽E

−,pos,⩽
E
+,lex) of edge orderings by

f1 ⩽E
−,pos f2

def⇔ |repr−(v1)|+ |X1| ≥ |repr−(v2)|+ |X2|

f1 ⩽E
+,lex f2

def⇔ lab(f1)[1] <Σ lab(f2)[1],

fi = (vi, Xi, wi) ∈ E be an edge for i = 1, 2. UnderΠpos
pos = (≼pos,≼pos), we define

the pair Γ pos
pos = (⩽E

−,pos,⩽
E
+,pos) of edge orderings, where f1 ⩽E

+,pos f2
def⇔ |X1|+

|repr−(w1)| ≥ |X2|+ |repr−(w2)| ·
6 The set U−(v) has appeared as the equivalence class [

−→
X]R of all factors with the same

end positions in [5], while U+(v) was recently introduced by [3, 4]. Indeed, U−(v)
encodes the node v itself, while U+(v) encodes all end positions of such factors [5].

6 H. Arimura et al.

Classification of edges. We classify edges in Nδ(v) using the representa-
tive reprδ(v) under ⩽

E
δ as follows. For δ ∈ {−,+}, δ-edge f ∈ Nδ(v) is said to be

δ-primary if reprδ(v) goes through f . We denote by E⋆
δ the set of all δ-primary

edges, and by E⋆
δ := E − E⋆

δ the set of all δ-secondary edges. The same edge
can be both (−)-primary and (+)-secondary, and vice versa. We remark that it
gives the partition E = E⋆

δ ⊎ E⋆
δ and equivalence |E⋆

−| = |E⋆
+| and |E⋆

−| = |E⋆
+|.7

Any suffix S ∈ Suf(T) is δ-trivial if it consists only of E⋆
δ -edges, and δ-nontrivial

otherwise, where the δ-trivial one is unique and denoted by Sδ. We assume that
Sδ has an imaginary edge fδ

8 at the bottom if δ = (−) and at the top if δ = (+).
Preprocessing. We observe that preprocessing of G = CDAWG(T) for the

information necessary in Sec. 4 and 5 can be efficiently done as follows [3, 4].

Lemma 3.1 (preprocessing). Under a pair ≼− = ≼pos and ≼+ of co-extensible
and extensible string orders, we can preprocess CDAWG(T) in O(e) worst-case
time and words of space to support the following operations in O(1) time for
∀v ∈ V:
(i) |reprδ(v)| returns the length ℓ ∈ 0 · ·n of reprδ(v), and is-primaryδ(f) ∈

{0, 1} indicates if f is δ-primary for δ ∈ {−,+} under ≼+ ∈ {≼lex,≼pos};
(ii) |shortest–(v)| returns the length |U | ∈ [n] and fstsym-shortest(v) returns

the start symbol U [1] ∈ Σ of the shortest string U in U−(v).

(iii) nleaves(v) ∈ N returns the number |U+(v)| of lower paths below v.

As usual, edges of the CDAWG are assumed to be sorted according to ⩽E
+,lex

and ⩽E
−,pos. If needed, it can be done in O(e) time and space; the sorting with

⩽E
+,lex is done by transposing an incident matrix between nodes and edges, while

the sorting with ⩽E
−,pos is done by traversing either the suffix links with a read-

only text or suffix links of type-ii nodes [16] in a self-index.
Canonical suffixes. Next, we introduce a set CSδ(G) of canonical suffixes,

a set SPδ(G) of search paths, and a mapping canoδ : E⋆
δ ∪ {fδ} → CSδ(G).

Definition 3.1 (canonical suffix and search path). For δ ∈ {−,+}, we
define a δ-canonical suffix S, its δ-certificate f , and its δ-search path P , where
π = (f1, . . . , fℓ), ℓ ≥ 1 is any path in Path(G) spelling a suffix S in Suf(T):

(a) In the case that S is trivial. Then, S = Sδ = reprδ(endδ) and it is always
canonical, where end− = sink and end+ = root . Then, the δ-certificate is
f = fδ, and the δ-search path for fδ is P = Sδ itself. Let canoδ(f) = Sδ.

(b) In the case that S is non-trivial. S is δ-canonical if it has a δ-canonical
factoring defined below with some index k ∈ [ℓ] of an edge in π:

(i) fδ = fk ∈ E⋆
δ , and moreover, if δ = (−) then fk is the highest E⋆

−-edge

in S, and if δ = (−) then fk is the lowest E⋆
+-edge in S;

(ii) the upper path Uδ = (f1, . . . , fk−1) consists only of E⋆
−-edges;

7 This is because any nonempty set Nδ(v) has at least one δ-primary edge.
8 We assume to add imaginary edges f− and f+, resp., which are attached above root
and below sink , into the sets E⋆− and E⋆+.

Optimally Computing Compressed Indexing Arrays 7

(iii) the lower path Lδ = (fk+1, . . . , fℓ) consists only of E⋆
+-edges;

(iv) the factoring is S = str(Uδ) ·Xδ · str(Dδ), where Xδ is the label of the
edge fk = (vδ, Xδ, wδ).

Then, the δ-certificate is f = fk, and the δ-search path for f is the path
P = U · X for δ = (−) and the path P = X · U for δ = (+), where
X = lab(f). Let canoδ(f) = S. ⋄

In what follows, we denote by CSδ(G) ⊆ Suf(T) and SPδ(G) ⊆ (E)∗ the set
of all δ-canonical suffixes of T and the set of all δ-search paths of G, reps., under
Π. We remark that any δ-canonical suffix S ∈ CSδ(G) can be recovered by its
δ-certificate edge f via canoδ, and thus the mapping canoδ is well-defined.

Lemma 3.2. For any δ ∈ {−,+} and any δ-canonical suffix S, its δ-canonical
factoring and δ-certificate fδ are unique. Consequently, the mapping canoδ is a
bijection between E⋆

δ ∪ {fδ} and CSδ(G).

Lemma 3.3 (properties of canonical suffixes). Under any pair Π of path
ordering, any suffix S in Suf(T) satisfies conditions (1) and (2) below:

(1) S has (−)-canonical factoring if and only if S has (+)-canonical factoring.

(2) Let S be any canonical suffix with the associated path π = (f1, . . . , fℓ) ∈
Path(G) spelling S, and let fk− , fk+

be the indexes of the (−)- and (+)-
certificate k−, k+ in π, resp., then 1 ⩽ k+ ⩽ k− ⩽ ℓ holds.

By Lem. 3.3, CS−(G) = CS+(G) holds. Thus, we denote the set by CS (G) :=
CS−(G) = CS+(G), and simply call its members canonical suffixes of G.

Forward and backward DFSs using search paths. Recall that in
our approach, we encode a target indexing array, say C, with a subset CS (G) of
canonical suffixes under some path ordering Π = (≼−,≼+) and an appropriately
chosen pair φ = (idx, val) of mappings over CS (G) as the image of CS (G)
by φ. Thus, the remaining task is to generate all index-value pairs φ(S) =
(idx(S), val(S)) by enumerating all S ∈ CS (G) in the appropriate index order
≼lex or ≼pos. To do this, we use the forward and backward DFSs using search
paths of SPδ(G) as follows.

Consider the directed graph T− (resp. T+) obtained from SP−(G) (resp. SP+(G))
by merging common prefixes (resp. suffixes). Then, we can easily see that (i) T−
is connected at the root (resp. so is T+ at the sink), (ii) T− is spanning over E⋆

−
(resp. so is T− over E⋆

+). However, the graph Tδ may contain the same edge more
than once. The next lemma states that it is not the case for SPδ(G). In Fig. 1,
we show examples of the forward and backward search trees T− and T+.

Lemma 3.4. Let (E⋆
−, E⋆

+) be any pair of partitions of E. Then, (1) the set
SP−(G) is prefix-free, and (2) the set SP+(G) is suffix-free.

Proof. (1) Since SP−(G) ⊆ (E⋆
−)

∗ · E⋆
−, for any distinct search paths X,Y in

SP−(G), X cannot be a proper prefix of Y . By symmetry, we can show (2).

8 H. Arimura et al.

Proposition 3.1. T− is a forward spanning tree for E⋆
− ∪ {f−} rooted at root,

while T+ is a backward spanning tree for E⋆
+ ∪ {f+} rooted at sink. Moreover,

T− and T+ have at most e edges.

Proof. Since properties (i) and (ii) were proved, we show that (iii) any distinct
paths of SPδ(G) do not share the same edge in common. Precisely speaking, Tδ
is a rooted tree whose nodes are edges of G. Note that if we embed it into G, it
may form a DAG in general. However, we can show the claim (iii) from Lem. 3.4.
From claim (iii), we also see that Tδ contains at most |E| = e edges.

Combining the above arguments, we have the main theorem of this section.

Proposition 3.2. Assume the standard path ordering Πpos
lex = (≼pos,≼lex). We

can perform the following tasks in O(e) worst-case time and words of space on
the ordered CDAWG G under Πpos

lex for T : (1) Enumerating all (−)-certificates
in E⋆

− ∪ {f−} in the lexicographic order ≼lex by the ordered ordered DFS of T−.
(2) Enumerating all (+)-certificates in E⋆

+ ∪ {f+} in the text order ≼pos by the
backward ordered DFS of T+.

Proof. By Prop. 3.1, we can enumerate all (−)-certificates in the lexicographic
order ≼lex by the standard ordered DFS of T− starting from the root of G and
going downwards it iteratively following E⋆

− edges; When it encountered an E⋆
−

edge, it report it and backtracks. At any node v, its outgoing edges are visited
in the order of ⩽E

+ =⩽E
+,lex. We remark that the DFS traverses the same edge

at most once because in the case that more than one edge of Tδ meet at the
same node on G, exactly one of them is (−)-primary. Therefore, the DFS follows
only exactly one E⋆

δ -edge, and backtracks with all the remaining E⋆
δ -edges. By

symmetry, we can enumerate all (+)-certificates in the text order ≼pos by the
backward ordered DFS of T+ starting from the sink ofG, going upwards following
E⋆
+ edges by selecting incoming edges in the order of (⩽E

−) = (⩽E
−,pos). In either

case, the DFS over Tδ traverses at most O(|Tδ|) = O(e) edges.

Concerning to Prop. 3.2, from (2) of Lem. 3.3, we can put the pointer
from each discovered (−)-certificate f− to its (+)-counterpart f+ such that
cano−(f−) = cano+(f+) in amortized O(1) time per certificate and vice versa.

4 Computing Run-Length BWT

Characterizations Given the BWT for a text T , the set of all irreducible
ranks is given by the set IBWT := { i ∈ [n] | BWT [i] ̸= BWT [i − 1] } ⊆
[n] · Then, we define the set QIBWT of all quasi-irreducible ranks by the set
QIBWT := { rnk(S) | S ∈ CSδ(G) } ⊆ [n], Obviously, |QIBWT | ⩽ e since rnk is
a bijection and |CS (G)| ⩽ e. By assumption, we can show that IBWT ⊆ QIBWT .
Consequently, QIBWT satisfies the following interpolation property.

Lemma 4.1 (interpolation property). Under (≼–,≼+) = (≼pos,≼lex), if
i∗ ̸∈ QIBWT , BWT [i] = BWT [i− 1] ∈ Σ holds for ∀i ∈ [n].

Optimally Computing Compressed Indexing Arrays 9

Algorithm 1: The algorithm for computing the quasi-irreducible BWT
for T [1 · ·n] from the CDAWG G for T stored in read-only memory.

1 Procedure RecRBWT(v);
2 begin
3 if N+(v) = ∅ then return (‘$’, 1) ; ▷Case: trivial suffix. T [n] = ‘$’
4 else ▷ Case: non-trivial suffix
5 for each f = (v,X,w) ∈ N+(v) in order ⩽E

+,lex compatible to ≼lex do
6 if is-primary−(f) then ▷ Case: (−)-primary
7 RBWT ′ ← RecRBWT(w);
8 else ▷ Case: (−)-secondary
9 c← precsym(f); ℓ← nleaves(dst(f)); RBWT ′ ← (c, ℓ);

10 RBWT ← RBWT ◦RBWT ′;

11 return RBWT ;

Algorithm. In Algorithm 1, we present the recursive procedure that com-
putes the quasi-irreducible BWT for text T from an input CDAWG G for T
stored in read-only memory or the self-index G = CDAWG−

Π(T) when it is in-
voked with v = root(G) and RBWT = ε. Let F = (P1, . . . , Ph), h ⩽ e, be the
sequence of all (−)-search path of SP−(G) sorted in the lexicographic order ≼lex

of string labels with the index i∗ of the trivial (−)-path. Let I = (I1, . . . , Ih) be
the associated sequence of SA-intervals such that Ii = [sp(Pi) · ·ep(Pi)] ⊆ [n] for
all i ∈ [h]. From Lem. 3.4, we can show that I forms an ordered partition of [n],
namely, the elements of I are ordered in ≼lex and any suffix falls in exactly one
interval of I.

Now, we give a characterization of the BWT in terms of the (−)-search paths
for the canonical suffixes.

Lemma 4.2. Let T [1 · ·n] ∈ Σn and BWT [1 · ·n] ∈ Σn be the BWT for T .

(1) BWT [1 · ·n] = BWT [I1] ◦ · · · ◦BWT [Ih].

(2) For each i ∈ [h], the conditions (i) and (ii) below hold: (i) If i = i∗, Pi is a
trivial (−)-search path, and then Ii∗ is a singleton and BWT [Ii∗] = T [n] = ‘$’.
(ii) If i ̸= i∗, Pi is a non-trivial (−)-search path with certificate f ∈ E⋆

−.
Then, BWT [I1] = cℓ, where c := T [p− 1], ℓ := |Ii|, and p = pos(canoδ(f)).

Proof (sketch). Claim (1) immediately follows from the definition of I. Claim
(2) is obvious since trivial (−)-search path is the longest suffix T [1 · ·] = T itself.
(3) Suppose that X is a non-trivial (−)-search path with locus v. Then, X is
not equal to repr−(v). As seen in Sec. 3, it follows that X is not left-maximal
in T . Therefore, there exists some c ∈ Σ that precedes all start positions of X
in T . Ii gives the number of leaves below v. Therefore, Claim (3) is proved.

Case with a read-only text. Suppose that the read-only text T [1 · ·n] is
available. By Lem. 4.2, we see that all BWT-intervals BWT [Ii] but BWT [Ii∗] are
equal-symbol runs with length |Ii|, while BWT [Ii∗] is the singleton ‘$’. Since the
position p of the lex-first suffix canoδ(f) in Ii can be obtained in constant time

10 H. Arimura et al.

the root the sink𝑣

𝑤

𝐿′

canonical suffix 𝑆 = 𝑈𝑋𝐿

≤!𝑬

certificate
edge 𝑓

preceding
edge 𝑓′𝑤′

𝓤#(𝑤) 𝓤!(𝑣)

another suffix 𝑆′ = 𝑈𝑋$𝐿′

lower path 𝐿

(+)-primary edges only𝐿: (-)-primary edges only (-)-secondary

upper path

𝑈′ shortest path

𝑈 the longest path

precsym
𝑇 𝑝 − 1 = 𝑈′[1]

(a) BWT: Computing a preceding symbol

the sinkthe root 𝑣

𝑤

𝑈′

canonical suffix 𝑆 = 𝑈𝑋𝐿

≤!𝑬

certificate
edge 𝑓

preceding
edge 𝑓′ 𝑤′

𝓤!(𝑣)𝓤#(𝑣)

𝐿′
another suffix 𝑆′ = 𝑈𝑋$𝐿′

upper path 𝑈

(-)-primary edges only 𝐿: (+)-primary only(+)-secondary

𝐿 lower path

(b) GLPF: Computing a previous factor

Fig. 2: Computation of run-length BWT and quasi-irreducible GLPF

by p = pos(canoδ(f)), the preceding symbol, denoted precsym(f) := T [p − 1],
can be obtained in constant time in the case of a read-only text. Concatenation of
two run-length encodings can be done in O(1) time by maintaining the symbols
at their both ends. Hence, we can construct the RLBWT of size r ⩽ e in O(e)
worst-case time and O(e) words of space using Algorithm 1.

Extension to the case without a text. Next, we consider the case that
input is the self-index version of CDAWG(T) without access to the text T .

Lemma 4.3 (computing a preceding symbol). Given G = CDAWG−
Π(T),

the set of O(e) preceding symbols precsym(f) := T [p − 1] of the non-trivial
canonical suffix S = canoδ(f) for all certificate edges f ∈ E⋆

– can be computed
in O(e) worst-case time and words of space.

Proof (sketch). Let S has position p and . Since S is non-trivial, there exists the
predecessor S′ of S such that |S′| = |S| + 1. Furthermore, there exists another
incoming edge f ′ such that f ′ ⩽E

−,pos f , f = (v,X,w), and f ′ = (v′, X ′, w) hold.
Then, S′ and S meet at node v going through f ′ and f , and thus, they can be
factorized as S′ = U ′X ′L and S = UXL (See Fig. 2a). Since U ′ is the shortest in
U−(w

′), it follows from Lem. 3.1 that precsym(f) = U ′[1] ∈ Σ can be computed
by fstsym-shortest(w′) using O(e) preprocessing and space.

Theorem 4.1. Let T [1 · ·n] be any text over an integer alphabet Σ. Given a self-
index version of CDAWG(T) without a text, Algorithm 1 constructs the RLBWT
of size r ⩽ e in O(e) worst-case time and O(e) words of space.

5 Computing Irreducible GLPF Arrays

Characterizations. In order to treat the PLCP and LPF arrays uniformly,
we introduce their generalization, called the quasi-irreducible GLPF array for a
text T parameterized by ≼+ ∈ {≼lex,≼pos} according to [7, 14].

Definition 5.1. The generalized longest previous factor (GLPF) array for a text
T [1 · ·n] under ≼+ is the array GLPF≼+ [1 · ·n] ∈ Nn such that for any p ∈ [n],
GLPF≼+

[p] := max({ lcp(Tp, Tq) | Tq≺+Tp, q ∈ [n] } ∪ {0}) ·
Lemma 5.1. For any text T , we have PLCP = GLPF≼lex

and LPF = GLPF≼pos .

Now, we introduce the quasi-irreducible GLPF array as a subrelation ‡GLPF
of GLPF indexed in ≼pos. Under Πpos

pos = (≼pos,≼+), we define the quasi-

irreducible GLPF array by the binary relation ‡GLPF := { (pos(S), val(S)) |

Optimally Computing Compressed Indexing Arrays 11

Algorithm 2: The algorithm for computing the quasi-irreducible GLPF
array for a text T from the CDAWG G for T or its self-index.

1 Procedure QIrrGLPF(v,QGL) ; ▷Assume path orderings Π = (≼pos,≼+)
2 begin
3 if N−(v) = ∅ then ▷ Case: trivial suffix at the root
4 QGL← QGL ◦ (1, 0)
5 else ▷ Case: non-trivial suffix at branching node
6 for each f = (w,X, v) in order ⩽E

−,pos compatible to ≼pos do
7 if is-primary+(f) then ▷ Case: (+)-primary
8 QIrrGLPF(w,QGL)
9 else ▷ Case: (+)-secondary

10 ℓ← |repr–(w)|; p← n+ 1− |repr–(w)| − |X| − |repr+(v)|;
11 QGL← QGL ◦ (p, ℓ); ▷output : GLPF [p] = ℓ

S ∈ CS (G) } ⊆ [n] × N · where val(S) = GLPF≼+ [pos(S)] and QIGLPF :=
{ pos(S) | S ∈ CS (G) } is the set of quasi-irreducible ranks. Since |CS (G)| ⩽ e,‡GLPF has size e. We observe that GLPF [p] = 0 implies p ∈ QIGLPF . Then,
GLPF≼+

satisfies the interpolation property below.

Proposition 5.1 (interpolation property). For any position p ∈ [n], if
p ̸∈ QIGLPF≼+

then GLPF≼+
[p] = GLPF≼+

[p − 1] − 1 holds. Consequently,

PLCP and LPF satisfy the same interpolation property w.r.t. QIGLPF .

Lemma 5.2 (characterization of GLPF≼+ value). For any pair (p, ℓ) ∈
[n]× N, the conditions (a)–(c) below are equivalent (See Fig. 2b):

(a) (p, ℓ) ∈ ‡GLPF.

(b) GLPF≼+
[p] = ℓ and Tp[1 · ·ℓ] = T [p · ·p+ ℓ− 1] is left-maximal in T .

(c) For some S ∈ CS (G), p = pos(S). Also, if S is (+)-trivial ℓ = 0, and if S
is (+)-nontrivial, it has the form S = cano+(f) = repr–(w) ·X · repr+(v)
for some (+)-certificate f = (w,X, v) ∈ E⋆

+ and ℓ = |repr–(w)| holds.

Algorithm. In Algorithm 2, we present the recursive procedure for com-

puting the quasi-irreducible GLPF array, ‡GLPF , of size e for a text T [1 · ·n]
from the self-index G = CDAWG−

Π(T) of size O(e) under a parameter pair
Π = (≼–,≼+), when it is invoked with v = sink(G) and QGL = ε.

Theorem 5.1. Let T [1 · ·n] be any text over an integer alphabet Σ. Given a self-
index version of CDAWG(T) without a text, Algorithm 2 constructs the quasi-
irreducible GLPF≼+ array for T of size e in O(e) worst-case time and O(e)
words of space.

By a simple procedure as in [7,14], we can easily compute either the lex-parse
from GLPF≼lex

or the LZ-parse from GLPF≼pos
in linear time in combined input

and output sizes. Hence, the next theorem follows from Lem. 5.1 and Thm. 4.1.

12 H. Arimura et al.

Theorem 5.2. Let T [1 · ·n] be any text over an integer alphabet Σ. The lex-
parse of size 2r = O(e) and the LZ-parse of size z ⩽ r of T can be computed
from a self-index version of CDAWG(T) without a text for the same text in O(e)
worst-case time and words of space.

Acknowledgments

The authors thank the anonymous reviewers for their helpful comments which
greatly improved the quality and presentation of the paper. The first author is
also grateful to Hideo Bannai for providing information on the literature on sub-
linear time and space conversion between text indexes, and to Mitsuru Funakoshi
for discussing the sensitivity of text indexes for morphic words.

References

1. Arimura, H., Inenaga, S., Kobayashi, Y., Nakashima, Y., Sue, M.: Optimally com-
puting compressed indexing arrays based on the compact directed acyclic word
graph. Manuscript (August 2023)

2. Bannai, H., Gawrychowski, P., Inenaga, S., Takeda, M.: Converting SLP to LZ78
in almost linear time. In: CPM 2013. pp. 38–49. Springer (2013)

3. Belazzougui, D., Cunial, F.: Representing the suffix tree with the CDAWG. In:
CPM 2017. LIPIcs, vol. 78, pp. 7:1–7:13 (2017)

4. Belazzougui, D., Cunial, F., Gagie, T., Prezza, N., Raffinot, M.: Composite
repetition-aware data structures. In: CPM 2015. pp. 26–39. Springer (2015)

5. Blumer, A., Blumer, J., Haussler, D., McConnell, R., Ehrenfeucht, A.: Complete
inverted files for efficient text retrieval and analysis. JACM 34(3), 578–595 (1987)

6. Brlek, S., Frosini, A., Mancini, I., Pergola, E., Rinaldi, S.: Burrows-wheeler trans-
form of words defined by morphisms. In: IWOCA 2019. pp. 393–404 (2019)

7. Crochemore, M., Ilie, L.: Computing longest previous factor in linear time and
applications. Information Processing Letters 106(2), 75–80 (2008)

8. Gusfield, D.: Algorithms on Strings, Trees, and Sequences: Computer Science and
Computational Biology. Cambridge University Press (1997)

9. Kärkkäinen, J., Manzini, G., Puglisi, S.J.: Permuted longest-common-prefix array.
In: CPM 2009. pp. 181–192. Springer (2009)

10. Kempa, D.: Optimal construction of compressed indexes for highly repetitive texts.
In: SODA 2019. pp. 1344–1357. SIAM (2019)

11. Kempa, D., Kociumaka, T.: Resolution of the burrows-wheeler transform conjec-
ture. Communications of the ACM 65(6), 91–98 (2022)

12. Mantaci, S., Restivo, A., Rosone, G., Sciortino, M., Versari, L.: Measuring the
clustering effect of bwt via rle. Theoretical Computer Science 698, 79–87 (2017)

13. Navarro, G.: Indexing highly repetitive string collections, part ii: Compressed in-
dexes. ACM Computing Surveys (CSUR) 54(2), 1–32 (2021)

14. Navarro, G., Ochoa, C., Prezza, N.: On the approximation ratio of ordered parsings.
IEEE Transactions on Information Theory 67(2), 1008–1026 (2020)

15. Radoszewski, J., Rytter, W.: On the structure of compacted subword graphs of
thue–morse words and their applications. JDA 11, 15–24 (2012)

16. Takagi, T., Goto, K., Fujishige, Y., Inenaga, S., Arimura, H.: Linear-size CDAWG.
In: SPIRE 2017. pp. 304–316 (2017)

	Optimally Computing Compressed Indexing Arrays Based on the Compact Directed Acyclic Word Graph

