Skip to main content

Whole-Heart Reconstruction with Explicit Topology Integrated Learning

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14225))

  • 3863 Accesses

Abstract

Reconstruction and visualization of cardiac structures play significant roles in computer-aided clinical practice as well as scientific research. With the advancement of medical imaging techniques, computing facilities, and deep learning models, automatically generating whole-heart meshes directly from medical imaging data becomes feasible and shows great potential. Existing works usually employ a point cloud metric, namely the Chamfer distance, as the optimization objective when reconstructing the whole-heart meshes, which nevertheless does not take the cardiac topology into consideration. Here, we propose a novel currents-represented surface loss to optimize the reconstructed mesh topology. Due to currents’s favorable property of encoding the topology of a whole surface, our proposed pipeline delivers whole-heart reconstruction results with correct topology and comparable or even higher accuracy.

Supported by the National Natural Science Foundation of China (62071210); the Shenzhen Science and Technology Program (RCYX20210609103056042); the Shenzhen Science and Technology Innovation Committee (KCXFZ2020122117340001); the Shenzhen Basic Research Program (JCYJ20200925153847004, JCYJ20190809 120205578).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Attar, R., et al.: 3D cardiac shape prediction with deep neural networks: simultaneous use of images and patient metadata. In: Shen, D., et al. (eds.) MICCAI 2019, Part II. LNCS, vol. 11765, pp. 586–594. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_65

    Chapter  Google Scholar 

  2. Bucioli, A.A., et al. Holographic real time 3D heart visualization from coronary tomography for multi-place medical diagnostics. In: 2017 IEEE 15th International Conference on Dependable, Autonomic and Secure Computing, 15th International Conference on Pervasive Intelligence and Computing, 3rd International Conference on Big Data Intelligence and Computing and Cyber Science and Technology Congress (DASC/PiCom/DataCom/CyberSciTech), pp. 239–244. IEEE, 6 November 2017

    Google Scholar 

  3. Beetz, M., Banerjee, A., Grau, V.: Biventricular surface reconstruction from cine MRI contours using point completion networks. In: 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), pp. 105–109. IEEE, April 2021

    Google Scholar 

  4. Banerjee, A., Zacur, E., Choudhury, R. P., Grau, V.: Automated 3D whole-heart mesh reconstruction from 2D cine MR slices using statistical shape model. In: 2022 44th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 1702–1706. IEEE, July 2022

    Google Scholar 

  5. Charon, N., Younes, L.: Shape spaces: From geometry to biological plausibility. In: Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging: Mathematical Imaging and Vision, pp. 1929–1958 (2023)

    Google Scholar 

  6. De Rham, G.: Variétés différentiables: formes, courants, formes harmoniques, vol. 3. Editions Hermann (1973)

    Google Scholar 

  7. Fischl, B.: FreeSurfer. Neuroimage 62(2), 774–781 (2012)

    Article  Google Scholar 

  8. Garvey, C.J., Hanlon, R.: Computed tomography in clinical practice. BMJ 324(7345), 1077–1080 (2002)

    Article  Google Scholar 

  9. González Izard, S., Sánchez Torres, R., Alonso Plaza, O., Juanes Mendez, J.A., García-Peñalvo, F.J.: NextMed: automatic imaging segmentation, 3D reconstruction, and 3D model visualization platform using augmented and virtual reality. Sensors 20(10), 2962 (2020)

    Article  Google Scholar 

  10. Hang, S.: TetGen, a delaunay-based quality tetrahedral mesh generator. ACM Trans. Math. Softw 41(2), 11 (2015)

    MathSciNet  MATH  Google Scholar 

  11. He, L., Ren, X., Gao, Q., Zhao, X., Yao, B., Chao, Y.: The connected-component labeling problem: a review of state-of-the-art algorithms. Pattern Recogn. 70, 25–43 (2017)

    Article  Google Scholar 

  12. Kong, F., Shadden, S.C.: Whole heart mesh generation for image-based computational simulations by learning free-from deformations. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12904, pp. 550–559. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87202-1_53

    Chapter  Google Scholar 

  13. Kong, F., Wilson, N., Shadden, S.: A deep-learning approach for direct whole-heart mesh reconstruction. Med. Image Anal. 74, 102222 (2021)

    Article  Google Scholar 

  14. Kong, F., Shadden, S.C.: Learning whole heart mesh generation from patient images for computational simulations. IEEE Trans. Med. Imaging 42(2), 533–545 (2022)

    Article  Google Scholar 

  15. Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3d surface construction algorithm. ACM siggraph Comput. Graph. 21(4), 163–169 (1987)

    Article  Google Scholar 

  16. Mittal, R., et al.: Computational modeling of cardiac hemodynamics: current status and future outlook. J. Comput. Phys. 305, 1065–1082 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Prakosa, A., et al.: Personalized virtual-heart technology for guiding the ablation of infarct-related ventricular tachycardia. Nat. Biomed. Eng. 2(10), 732–740 (2018)

    Article  Google Scholar 

  18. Painchaud, N., Skandarani, Y., Judge, T., Bernard, O., Lalande, A., Jodoin, P.M.: Cardiac segmentation with strong anatomical guarantees. IEEE Trans. Med. Imaging 39(11), 3703–3713 (2020)

    Article  Google Scholar 

  19. Pak, D.H., et al.: Distortion energy for deep learning-based volumetric finite element mesh generation for aortic valves. In: de Bruijne, M., et al. (eds.) MICCAI 2021, Part VI. LNCS, vol. 12906, pp. 485–494. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87231-1_47

    Chapter  Google Scholar 

  20. Stokes, M.B., Roberts-Thomson, R.: The role of cardiac imaging in clinical practice. Aust. Prescriber 40(4), 151 (2017)

    Article  Google Scholar 

  21. Tang, X., Holland, D., Dale, A.M., Younes, L., Miller, M.I., Initiative, A.D.N.: Shape abnormalities of subcortical and ventricular structures in mild cognitive impairment and Alzheimer’s disease: detecting, quantifying, and predicting. Hum. Brain Mapping 35(8), 3701–3725 (2014)

    Article  Google Scholar 

  22. Tsougos, I.: Advanced MR Neuroimaging: from Theory to Clinical Practice. CRC Press, Boca Raton (2017)

    Book  Google Scholar 

  23. Vaillant, M., Glaunès, J.: Surface matching via currents. In: Christensen, G.E., Sonka, M. (eds.) IPMI 2005. LNCS, vol. 3565, pp. 381–392. Springer, Heidelberg (2005). https://doi.org/10.1007/11505730_32

    Chapter  Google Scholar 

  24. Zhuang, X., Shen, J.: Multi-scale patch and multi-modality atlases for whole heart segmentation of MRI. Med. Image Anal. 31, 77–87 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoying Tang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 446 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, H., Tam, R., Tang, X. (2023). Whole-Heart Reconstruction with Explicit Topology Integrated Learning. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14225. Springer, Cham. https://doi.org/10.1007/978-3-031-43987-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43987-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43986-5

  • Online ISBN: 978-3-031-43987-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics