Skip to main content

Combat Long-Tails in Medical Classification with Relation-Aware Consistency and Virtual Features Compensation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14225))

  • 3782 Accesses

Abstract

Deep learning techniques have achieved promising performance for computer-aided diagnosis, which is beneficial to alleviate the workload of clinicians. However, due to the scarcity of diseased samples, medical image datasets suffer from an inherent imbalance, and lead diagnostic algorithms biased to majority categories. This degrades the diagnostic performance, especially in recognizing rare categories. Existing works formulate this challenge as long-tails and adopt decoupling strategies to mitigate the effect of the biased classifier. But these works only use the imbalanced dataset to train the encoder and resample data to re-train the classifier by discarding the samples of head categories, thereby restricting the diagnostic performance. To address these problems, we propose a Multi-view Relation-aware Consistency and Virtual Features Compensation (MRC-VFC) framework for long-tailed medical image classification in two stages. In the first stage, we devise a Multi-view Relation-aware Consistency (MRC) for representation learning, which provides the training of encoders with unbiased guidance in addition to the imbalanced supervision. In the second stage, to produce an impartial classifier, we propose the Virtual Features Compensation (VFC) to recalibrate the classifier by generating massive balanced virtual features. Compared with the resampling, VFC compensates the minority classes to optimize an unbiased classifier with preserving complete knowledge of the majority ones. Extensive experiments on two long-tailed public benchmarks confirm that our MRC-VFC framework remarkably outperforms state-of-the-art algorithms.

L. Pan and Y. Zhang—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.isic-archive.com/.

  2. 2.

    https://challenge.isic-archive.com/landing/2019/.

References

  1. Ahrendt, P.: The multivariate gaussian probability distribution. Technical report, Technical University of Denmark, p. 203 (2005)

    Google Scholar 

  2. Buda, M., Maki, A., Mazurowski, M.A.: A systematic study of the class imbalance problem in convolutional neural networks. Neural Netw. 106, 249–259 (2018)

    Article  Google Scholar 

  3. Buslaev, A., Iglovikov, V.I., Khvedchenya, E., Parinov, A., Druzhinin, M., Kalinin, A.A.: Albumentations: fast and flexible image augmentations. Information 11(2), 125 (2020)

    Article  Google Scholar 

  4. Cao, K., Wei, C., Gaidon, A., Arechiga, N., Ma, T.: Learning imbalanced datasets with label-distribution-aware margin loss. In: NeurIPS, vol. 32 (2019)

    Google Scholar 

  5. Chen, Z., Guo, X., Woo, P.Y., Yuan, Y.: Super-resolution enhanced medical image diagnosis with sample affinity interaction. IEEE Trans. Med. Imaging 40(5), 1377–1389 (2021)

    Article  Google Scholar 

  6. Chen, Z., Guo, X., Yang, C., Ibragimov, B., Yuan, Y.: Joint spatial-wavelet dual-stream network for super-resolution. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12265, pp. 184–193. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59722-1_18

    Chapter  Google Scholar 

  7. Chen, Z., Yang, C., Zhu, M., Peng, Z., Yuan, Y.: Personalized retrogress-resilient federated learning toward imbalanced medical data. IEEE Trans. Med. Imaging 41(12), 3663–3674 (2022)

    Article  Google Scholar 

  8. Cui, Y., Jia, M., Lin, T.Y., Song, Y., Belongie, S.: Class-balanced loss based on effective number of samples. In: CVPR, pp. 9268–9277 (2019)

    Google Scholar 

  9. De Fauw, J., et al.: Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat. Med. 24(9), 1342–1350 (2018)

    Article  Google Scholar 

  10. Esteva, A., et al.: Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639), 115–118 (2017)

    Article  Google Scholar 

  11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  12. Ju, L., et al.: Flexible sampling for long-tailed skin lesion classification. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13433, pp. 462–471. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16437-8_44

    Chapter  Google Scholar 

  13. Kang, B., Li, Y., Xie, S., Yuan, Z., Feng, J.: Exploring balanced feature spaces for representation learning. In: ICLR (2021)

    Google Scholar 

  14. Kang, B., et al.: Decoupling representation and classifier for long-tailed recognition. In: ICLR (2020)

    Google Scholar 

  15. Li, J., et al.: Flat-aware cross-stage distilled framework for imbalanced medical image classification. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13433, pp. 217–226. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16437-8_21

    Chapter  Google Scholar 

  16. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: ICCV, pp. 2980–2988 (2017)

    Google Scholar 

  17. Liu, J., Sun, Y., Han, C., Dou, Z., Li, W.: Deep representation learning on long-tailed data: a learnable embedding augmentation perspective. In: CVPR, pp. 2970–2979 (2020)

    Google Scholar 

  18. Liu, Z., Miao, Z., Zhan, X., Wang, J., Gong, B., Yu, S.X.: Large-scale long-tailed recognition in an open world. In: CVPR, pp. 2537–2546 (2019)

    Google Scholar 

  19. Luo, M., Chen, F., Hu, D., Zhang, Y., Liang, J., Feng, J.: No fear of heterogeneity: classifier calibration for federated learning with non-IID data. In: NeurIPS, vol. 34, pp. 5972–5984 (2021)

    Google Scholar 

  20. Moon, T.K.: The expectation-maximization algorithm. IEEE Sig. Process. Mag. 13(6), 47–60 (1996)

    Article  Google Scholar 

  21. More, A.: Survey of resampling techniques for improving classification performance in unbalanced datasets. arXiv preprint arXiv:1608.06048 (2016)

  22. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: NeurIPS, vol. 32 (2019)

    Google Scholar 

  23. Srinidhi, C.L., Ciga, O., Martel, A.L.: Deep neural network models for computational histopathology: a survey. Med. Image Anal. 67, 101813 (2021)

    Article  Google Scholar 

  24. Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  25. Tschandl, P., Rosendahl, C., Kittler, H.: The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci. Data 5(1), 1–9 (2018)

    Article  Google Scholar 

  26. Wang, J., et al.: Seesaw loss for long-tailed instance segmentation. In: CVPR, pp. 9695–9704 (2021)

    Google Scholar 

  27. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: beyond empirical risk minimization. arXiv preprint arXiv:1710.09412 (2017)

  28. Zhang, Y., Kang, B., Hooi, B., Yan, S., Feng, J.: Deep long-tailed learning: a survey. arXiv preprint arXiv:2110.04596 (2021)

  29. Zhang, Y., Wei, X.S., Zhou, B., Wu, J.: Bag of tricks for long-tailed visual recognition with deep convolutional neural networks. In: AAAI, vol. 35, pp. 3447–3455 (2021)

    Google Scholar 

  30. Zhang, Z., Sabuncu, M.: Generalized cross entropy loss for training deep neural networks with noisy labels. In: NeurIPS, vol. 31 (2018)

    Google Scholar 

  31. Zhou, B., Cui, Q., Wei, X.S., Chen, Z.M.: BBN: bilateral-branch network with cumulative learning for long-tailed visual recognition. In: CVPR, pp. 9719–9728 (2020)

    Google Scholar 

  32. Zhou, X., Liu, X., Wang, C., Zhai, D., Jiang, J., Ji, X.: Learning with noisy labels via sparse regularization. In: ICCV, pp. 72–81 (2021)

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by the InnoHK program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pan, L., Zhang, Y., Yang, Q., Li, T., Chen, Z. (2023). Combat Long-Tails in Medical Classification with Relation-Aware Consistency and Virtual Features Compensation. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14225. Springer, Cham. https://doi.org/10.1007/978-3-031-43987-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43987-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43986-5

  • Online ISBN: 978-3-031-43987-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics