Abstract
Deep learning techniques have achieved promising performance for computer-aided diagnosis, which is beneficial to alleviate the workload of clinicians. However, due to the scarcity of diseased samples, medical image datasets suffer from an inherent imbalance, and lead diagnostic algorithms biased to majority categories. This degrades the diagnostic performance, especially in recognizing rare categories. Existing works formulate this challenge as long-tails and adopt decoupling strategies to mitigate the effect of the biased classifier. But these works only use the imbalanced dataset to train the encoder and resample data to re-train the classifier by discarding the samples of head categories, thereby restricting the diagnostic performance. To address these problems, we propose a Multi-view Relation-aware Consistency and Virtual Features Compensation (MRC-VFC) framework for long-tailed medical image classification in two stages. In the first stage, we devise a Multi-view Relation-aware Consistency (MRC) for representation learning, which provides the training of encoders with unbiased guidance in addition to the imbalanced supervision. In the second stage, to produce an impartial classifier, we propose the Virtual Features Compensation (VFC) to recalibrate the classifier by generating massive balanced virtual features. Compared with the resampling, VFC compensates the minority classes to optimize an unbiased classifier with preserving complete knowledge of the majority ones. Extensive experiments on two long-tailed public benchmarks confirm that our MRC-VFC framework remarkably outperforms state-of-the-art algorithms.
L. Pan and Y. Zhang—Equal contribution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ahrendt, P.: The multivariate gaussian probability distribution. Technical report, Technical University of Denmark, p. 203 (2005)
Buda, M., Maki, A., Mazurowski, M.A.: A systematic study of the class imbalance problem in convolutional neural networks. Neural Netw. 106, 249–259 (2018)
Buslaev, A., Iglovikov, V.I., Khvedchenya, E., Parinov, A., Druzhinin, M., Kalinin, A.A.: Albumentations: fast and flexible image augmentations. Information 11(2), 125 (2020)
Cao, K., Wei, C., Gaidon, A., Arechiga, N., Ma, T.: Learning imbalanced datasets with label-distribution-aware margin loss. In: NeurIPS, vol. 32 (2019)
Chen, Z., Guo, X., Woo, P.Y., Yuan, Y.: Super-resolution enhanced medical image diagnosis with sample affinity interaction. IEEE Trans. Med. Imaging 40(5), 1377–1389 (2021)
Chen, Z., Guo, X., Yang, C., Ibragimov, B., Yuan, Y.: Joint spatial-wavelet dual-stream network for super-resolution. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12265, pp. 184–193. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59722-1_18
Chen, Z., Yang, C., Zhu, M., Peng, Z., Yuan, Y.: Personalized retrogress-resilient federated learning toward imbalanced medical data. IEEE Trans. Med. Imaging 41(12), 3663–3674 (2022)
Cui, Y., Jia, M., Lin, T.Y., Song, Y., Belongie, S.: Class-balanced loss based on effective number of samples. In: CVPR, pp. 9268–9277 (2019)
De Fauw, J., et al.: Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat. Med. 24(9), 1342–1350 (2018)
Esteva, A., et al.: Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639), 115–118 (2017)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)
Ju, L., et al.: Flexible sampling for long-tailed skin lesion classification. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13433, pp. 462–471. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16437-8_44
Kang, B., Li, Y., Xie, S., Yuan, Z., Feng, J.: Exploring balanced feature spaces for representation learning. In: ICLR (2021)
Kang, B., et al.: Decoupling representation and classifier for long-tailed recognition. In: ICLR (2020)
Li, J., et al.: Flat-aware cross-stage distilled framework for imbalanced medical image classification. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13433, pp. 217–226. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16437-8_21
Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: ICCV, pp. 2980–2988 (2017)
Liu, J., Sun, Y., Han, C., Dou, Z., Li, W.: Deep representation learning on long-tailed data: a learnable embedding augmentation perspective. In: CVPR, pp. 2970–2979 (2020)
Liu, Z., Miao, Z., Zhan, X., Wang, J., Gong, B., Yu, S.X.: Large-scale long-tailed recognition in an open world. In: CVPR, pp. 2537–2546 (2019)
Luo, M., Chen, F., Hu, D., Zhang, Y., Liang, J., Feng, J.: No fear of heterogeneity: classifier calibration for federated learning with non-IID data. In: NeurIPS, vol. 34, pp. 5972–5984 (2021)
Moon, T.K.: The expectation-maximization algorithm. IEEE Sig. Process. Mag. 13(6), 47–60 (1996)
More, A.: Survey of resampling techniques for improving classification performance in unbalanced datasets. arXiv preprint arXiv:1608.06048 (2016)
Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: NeurIPS, vol. 32 (2019)
Srinidhi, C.L., Ciga, O., Martel, A.L.: Deep neural network models for computational histopathology: a survey. Med. Image Anal. 67, 101813 (2021)
Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. In: Advances in Neural Information Processing Systems, vol. 30 (2017)
Tschandl, P., Rosendahl, C., Kittler, H.: The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci. Data 5(1), 1–9 (2018)
Wang, J., et al.: Seesaw loss for long-tailed instance segmentation. In: CVPR, pp. 9695–9704 (2021)
Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: beyond empirical risk minimization. arXiv preprint arXiv:1710.09412 (2017)
Zhang, Y., Kang, B., Hooi, B., Yan, S., Feng, J.: Deep long-tailed learning: a survey. arXiv preprint arXiv:2110.04596 (2021)
Zhang, Y., Wei, X.S., Zhou, B., Wu, J.: Bag of tricks for long-tailed visual recognition with deep convolutional neural networks. In: AAAI, vol. 35, pp. 3447–3455 (2021)
Zhang, Z., Sabuncu, M.: Generalized cross entropy loss for training deep neural networks with noisy labels. In: NeurIPS, vol. 31 (2018)
Zhou, B., Cui, Q., Wei, X.S., Chen, Z.M.: BBN: bilateral-branch network with cumulative learning for long-tailed visual recognition. In: CVPR, pp. 9719–9728 (2020)
Zhou, X., Liu, X., Wang, C., Zhai, D., Jiang, J., Ji, X.: Learning with noisy labels via sparse regularization. In: ICCV, pp. 72–81 (2021)
Acknowledgments
This work was supported in part by the InnoHK program.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Pan, L., Zhang, Y., Yang, Q., Li, T., Chen, Z. (2023). Combat Long-Tails in Medical Classification with Relation-Aware Consistency and Virtual Features Compensation. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14225. Springer, Cham. https://doi.org/10.1007/978-3-031-43987-2_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-43987-2_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-43986-5
Online ISBN: 978-3-031-43987-2
eBook Packages: Computer ScienceComputer Science (R0)