Skip to main content

Wall Thickness Estimation from Short Axis Ultrasound Images via Temporal Compatible Deformation Learning

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

Structural parameters of the heart, such as left ventricular wall thickness (LVWT), have important clinical significance for cardiac disease. In clinical practice, it requires tedious labor work to be obtained manually from ultrasound images and results in large variations between experts. Great challenges exist to automatize this procedure: the myocardium boundary is sensitive to heavy noise and can lead to irregular boundaries; the temporal dynamics in the ultrasound video are not well retained. In this paper, we propose a Temporally Compatible Deformation learning network, named TC-Deformer, to detect the myocardium boundaries and estimate LVWT automatically. Specifically, we first propose a two-stage deformation learning network to estimate the myocardium boundaries by deforming a prior myocardium template. A global affine transformation is first learned to shift and scale the template. Then a dense deformation field is learned to adjust locally the template to match the myocardium boundaries. Second, to make the deformation learning of different frames become compatible in the temporal dynamics, we adopt the mean parameters of affine transformation for all frames and propose a bi-direction deformation learning to guarantee that the deformation fields across the whole sequences can be applied to both the myocardium boundaries and the ultrasound images. Experimental results on an ultrasound dataset of 201 participants show that the proposed method can achieve good boundary detection of basal, middle, and apical myocardium, and lead to accurate estimation of the LVWT, with a mean absolute error of less than 1.00 mm. When compared with human methods, our TC-Deformer performs better than the junior cardiologists and is on par with the middle-level cardiologists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amer, A., Ye, X., Janan, F.: ResDUnet: a deep learning-based left ventricle segmentation method for echocardiography. IEEE Access 9, 159755–159763 (2021)

    Article  Google Scholar 

  2. Chen, L., Su, Y., Yang, X., Li, C., Yu, J.: Clinical study on LVO-based evaluation of left ventricular wall thickness and volume of AHCM patients. J. Radiat. Res. Appl. Sci. 16(2), 100545 (2023)

    Google Scholar 

  3. Deng, K., et al.: TransBridge: a lightweight transformer for left ventricle segmentation in echocardiography. In: Noble, J.A., Aylward, S., Grimwood, A., Min, Z., Lee, S.-L., Hu, Y. (eds.) ASMUS 2021. LNCS, vol. 12967, pp. 63–72. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87583-1_7

    Chapter  Google Scholar 

  4. Du, X., Tang, R., Yin, S., Zhang, Y., Li, S.: Direct segmentation-based full quantification for left ventricle via deep multi-task regression learning network. IEEE J. Biomed. Health Inf. 23(3), 942–948 (2018)

    Article  Google Scholar 

  5. Ge, R., et al.: PV-LVNet: direct left ventricle multitype indices estimation from 2d echocardiograms of paired apical views with deep neural networks. Med. Image Anal. 58, 101554 (2019)

    Article  Google Scholar 

  6. Karamitsos, T.D., Francis, J.M., Myerson, S., Selvanayagam, J.B., Neubauer, S.: The role of cardiovascular magnetic resonance imaging in heart failure. J. Am. Coll. Cardiol. 54(15), 1407–1424 (2009)

    Article  Google Scholar 

  7. Leclerc, S., et al.: LU-Net: a multistage attention network to improve the robustness of segmentation of left ventricular structures in 2-D echocardiography. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 67(12), 2519–2530 (2020)

    Article  Google Scholar 

  8. Lee, M.C.H., Petersen, K., Pawlowski, N., Glocker, B., Schaap, M.: TeTrIS: template transformer networks for image segmentation with shape priors. IEEE Trans. Med. Imaging 38(11), 2596–2606 (2019)

    Article  Google Scholar 

  9. Liang, J., et al.: Sketch guided and progressive growing GAN for realistic and editable ultrasound image synthesis. Med. Image Anal. 79, 102461 (2022)

    Article  Google Scholar 

  10. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  11. Wang, Z.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  12. Wei, H., Cao, H., Cao, Y., Zhou, Y., Xue, W., Ni, D., Li, S.: Temporal-consistent segmentation of echocardiography with co-learning from appearance and shape. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12262, pp. 623–632. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59713-9_60

    Chapter  Google Scholar 

  13. Wei, H., Ma, J., Zhou, Y., Xue, W., Ni, D.: Co-learning of appearance and shape for precise ejection fraction estimation from echocardiographic sequences. Med. Image Anal. 84, 102686 (2023)

    Article  Google Scholar 

  14. Xue, W., Cao, H., Ma, J., Bai, T., Wang, T., Ni, D.: Improved segmentation of echocardiography with orientation-congruency of optical flow and motion-enhanced segmentation. IEEE J. Biomed. Health Inf. 26(12), 6105–6115 (2022)

    Article  Google Scholar 

  15. Xue, W., Islam, A., Bhaduri, M., Li, S.: Direct multitype cardiac indices estimation via joint representation and regression learning. IEEE Trans. Med. Imaging 36(10), 2057–2067 (2017)

    Article  Google Scholar 

  16. Xue, W., Nachum, I.B., Pandey, S., Warrington, J., Leung, S., Li, S.: Direct estimation of regional wall thicknesses via residual recurrent neural network. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 505–516. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_40

    Chapter  Google Scholar 

  17. Zeng, Y., et al.: MAEF-Net: multi-attention efficient feature fusion network for left ventricular segmentation and quantitative analysis in two-dimensional echocardiography. Ultrasonics 127, 106855 (2023)

    Article  Google Scholar 

Download references

Acknowledgement

The work is partially supported by the Natural Science Foundation of China (62171290), the Shenzhen Science and Technology Program (20220810145705001, JCYJ20190808115419619, SGDX20201103095613036), Medical Scientific Research Foundation of Guangdong Province (No. A2021370).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yingying Liu or Wufeng Xue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, A. et al. (2023). Wall Thickness Estimation from Short Axis Ultrasound Images via Temporal Compatible Deformation Learning. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14225. Springer, Cham. https://doi.org/10.1007/978-3-031-43987-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43987-2_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43986-5

  • Online ISBN: 978-3-031-43987-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics