Skip to main content

Improving Pathology Localization: Multi-series Joint Attention Takes the Lead

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

Automated magnetic resonance imaging (MRI) pathology localization can significantly reduce inter-reader variability and the time expert radiologists need to make a diagnosis. Many automated localization pipelines only operate on a single series at a time and are unable to capture inter-series relationships of pathology features. However, some pathologies require the joint consideration of multiple series to be accurately located in the face of highly anisotropic volumes and unique anatomies. To efficiently and accurately localize a pathology, we propose a Multi-series jOint ATtention localization framework (MOAT) for MRI, which shares information among different MRI series to jointly predict the pathological location(s) in each MRI series. The framework allows different MRI series to share latent representations with each other allowing each series to get location guidance from the others and enforcing consistency between the predicted locations. Extensive experiments on three knee MRI pathology datasets, including medial compartment cartilage (MCC) high-grade defects, medial meniscus (MM) tear and displaced fragment/flap (DF) with 2729, 2355, and 4608 studies respectively, show that our proposed method outperforms the state of the art approaches by 3.4 to 8.0 mm on L1 distance, 6 to 27% on specificity and 5 to 14% on sensitivity across different pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  2. Cheng, B., Misra, I., Schwing, A.G., Kirillov, A., Girdhar, R.: Masked-attention mask transformer for universal image segmentation (2022)

    Google Scholar 

  3. Kornreich, M., et al.: Combining mixed-format labels for AI-based pathology detection pipeline in a large-scale knee MRI study. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13438, pp. 183–192. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16452-1_18

    Chapter  Google Scholar 

  4. Li, X., et al.: SDMT: spatial dependence multi-task transformer network for 3D knee MRI segmentation and landmark localization. IEEE Trans. Med. Imaging (2023)

    Google Scholar 

  5. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101 (2017)

  6. Mao, W., et al.: Poseur: direct human pose regression with transformers (2022)

    Google Scholar 

  7. Mathai, T.S., et al.: Lymph node detection in T2 MRI with transformers. In: Medical Imaging 2022: Computer-Aided Diagnosis, vol. 12033, pp. 855–859. SPIE (2022)

    Google Scholar 

  8. Prakash, A., Chitta, K., Geiger, A.: Multi-modal fusion transformer for end-to-end autonomous driving. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2021)

    Google Scholar 

  9. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  10. Shvetsova, N., et al.: Everything at once - multi-modal fusion transformer for video retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 20020–20029 (2022)

    Google Scholar 

  11. Tiulpin, A., Melekhov, I., Saarakkala, S.: Kneel: knee anatomical landmark localization using hourglass networks. In: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops (2019)

    Google Scholar 

  12. Tran, D., Wang, H., Torresani, L., Ray, J., LeCun, Y., Paluri, M.: A closer look at spatiotemporal convolutions for action recognition. CoRR abs/1711.11248 (2017). http://arxiv.org/abs/1711.11248

  13. Woo, S., Park, J., Lee, J.Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 3–19 (2018)

    Google Scholar 

  14. Xu, Y., Zhang, J., Zhang, Q., Tao, D.: Vitpose+: vision transformer foundation model for generic body pose estimation. arXiv preprint arXiv:2212.04246 (2022)

  15. Zhang, Y., Jiang, H., Miura, Y., Manning, C.D., Langlotz, C.P.: Contrastive learning of medical visual representations from paired images and text. In: Machine Learning for Healthcare Conference, pp. 2–25. PMLR (2022)

    Google Scholar 

  16. Zhu, J., Zhao, Q., Zhu, J., Zhou, A., Shao, H.: A novel method for 3D knee anatomical landmark localization by combining global and local features. Mach. Vis. Appl. 33(4), 52 (2022)

    Article  Google Scholar 

  17. Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable DETR: deformable transformers for end-to-end object detection. arXiv preprint arXiv:2010.04159 (2020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashwin Raju .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1681 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Raju, A. et al. (2023). Improving Pathology Localization: Multi-series Joint Attention Takes the Lead. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14225. Springer, Cham. https://doi.org/10.1007/978-3-031-43987-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43987-2_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43986-5

  • Online ISBN: 978-3-031-43987-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics