Skip to main content

A Spatial-Temporally Adaptive PINN Framework for 3D Bi-Ventricular Electrophysiological Simulations and Parameter Inference

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14226))

  • 2993 Accesses

Abstract

Physics-informed neural networks (PINNs) is a new paradigm for solving the forward and inverse problems of partial differential equations (PDEs). Its penetration into 3D bi-ventricular electrophysiology (EP) however has been slow, owing to its fundamental limitations to solve PDEs over large or complex solution domains with sharp transitions. In this paper, we propose a new PINN framework to overcome these challenges via three key innovations: 1) a weak-form PDE residual to bypass the challenges of high-order spatial derivatives over irregular spatial domains, 2) a spatial-temporally adaptive training strategy to mitigate the failure of PINN to propagate correct solutions and accelerate convergence, and 3) a sequential learning strategy to enable solutions over longer time domains. We experimentally demonstrated the effectiveness of the presented PINN framework to obtain the complete forward and inverse EP solutions over the 3D bi-ventricular geometry, which is otherwise not possible with vanilla PINN frameworks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aliev, R.R., Panfilov, A.V.: A simple two-variable model of cardiac excitation. Chaos Solitons Fract. 7(3), 293–301 (1996)

    Article  Google Scholar 

  2. Arevalo, H.J., et al.: Arrhythmia risk stratification of patients after myocardial infarction using personalized heart models. Nat. Commun. 7(1), 11437 (2016)

    Article  MathSciNet  Google Scholar 

  3. Bu, J., Karpatne, A.: Quadratic residual networks: a new class of neural networks for solving forward and inverse problems in physics involving PDEs. In: Proceedings of the 2021 SIAM International Conference on Data Mining (SDM), pp. 675–683. SIAM (2021)

    Google Scholar 

  4. Chen, Y., Lu, L., Karniadakis, G.E., Dal Negro, L.: Physics-informed neural networks for inverse problems in nano-optics and metamaterials. Opt. Express 28(8), 11618–11633 (2020)

    Article  Google Scholar 

  5. Clayton, R., et al.: Models of cardiac tissue electrophysiology: progress, challenges and open questions. Prog. Biophys. Mol. Biol. 104(1–3), 22–48 (2011)

    Article  Google Scholar 

  6. Daw, A., Bu, J., Wang, S., Perdikaris, P., Karpatne, A.: Rethinking the importance of sampling in physics-informed neural networks. arXiv preprint arXiv:2207.02338 (2022)

  7. Dhamala, J., et al.: Embedding high-dimensional Bayesian optimization via generative modeling: parameter personalization of cardiac electrophysiological models. Med. Image Anal. 62, 101670 (2020)

    Article  Google Scholar 

  8. Hao, Z., et al.: Physics-informed machine learning: a survey on problems, methods and applications. arXiv preprint arXiv:2211.08064 (2022)

  9. Herrero Martin, C., et al.: Ep-pinns: cardiac electrophysiology characterisation using physics-informed neural networks. Front. Cardiovasc. Med. 8, 2179 (2022)

    Article  Google Scholar 

  10. Jagtap, A.D., Shin, Y., Kawaguchi, K., Karniadakis, G.E.: Deep Kronecker neural networks: a general framework for neural networks with adaptive activation functions. Neurocomputing 468, 165–180 (2022)

    Article  Google Scholar 

  11. Jin, X., Cai, S., Li, H., Karniadakis, G.E.: NSFnets (Navier-Stokes flow nets): physics-informed neural networks for the incompressible Navier-Stokes equations. J. Comput. Phys. 426, 109951 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  12. Karniadakis, G.E., Kevrekidis, I.G., Lu, L., Perdikaris, P., Wang, S., Yang, L.: Physics-informed machine learning. Nat. Rev. Phys. 3(6), 422–440 (2021)

    Article  Google Scholar 

  13. Kissas, G., Yang, Y., Hwuang, E., Witschey, W.R., Detre, J.A., Perdikaris, P.: Machine learning in cardiovascular flows modeling: predicting arterial blood pressure from non-invasive 4D flow MRI data using physics-informed neural networks. Comput. Methods Appl. Mech. Eng. 358, 112623 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  14. Krishnapriyan, A., Gholami, A., Zhe, S., Kirby, R., Mahoney, M.W.: Characterizing possible failure modes in physics-informed neural networks. In: Advances in Neural Information Processing Systems, vol. 34, pp. 26548–26560 (2021)

    Google Scholar 

  15. Mathews, A., Francisquez, M., Hughes, J.W., Hatch, D.R., Zhu, B., Rogers, B.N.: Uncovering turbulent plasma dynamics via deep learning from partial observations. Phys. Rev. E 104(2), 025205 (2021)

    Article  Google Scholar 

  16. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  17. Sahli Costabal, F., Yang, Y., Perdikaris, P., Hurtado, D.E., Kuhl, E.: Physics-informed neural networks for cardiac activation mapping. Front. Phys. 8, 42 (2020)

    Article  Google Scholar 

  18. Sermesant, M., et al.: Patient-specific electromechanical models of the heart for the prediction of pacing acute effects in CRT: a preliminary clinical validation. Med. Image Anal. 16(1), 201–215 (2012)

    Article  Google Scholar 

  19. Wang, L., Zhang, H., Wong, K.C., Liu, H., Shi, P.: Physiological-model-constrained noninvasive reconstruction of volumetric myocardial transmembrane potentials. IEEE Trans. Biomed. Eng. 57(2), 296–315 (2009)

    Article  Google Scholar 

  20. Wang, S., Sankaran, S., Perdikaris, P.: Respecting causality is all you need for training physics-informed neural networks. arXiv abs/2203.07404 (2022)

    Google Scholar 

  21. Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM J. Sci. Comput. 43(5), A3055–A3081 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wang, S., Yu, X., Perdikaris, P.: When and why PINNs fail to train: a neural tangent kernel perspective. J. Comput. Phys. 449, 110768 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  23. Xu, K., Darve, E.: Physics constrained learning for data-driven inverse modeling from sparse observations. J. Comput. Phys. 453, 110938 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhang, H., Shi, P.: A meshfree method for solving cardiac electrical propagation. In: 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, pp. 349–352. IEEE (2006)

    Google Scholar 

Download references

Acknowledgements

This work is supported in part by the National Key Research and Development Program of China(No: 2020AAA0109502); the National Natural Science Foundation of China (No: U1809204); the Talent Program of Zhejiang Province (No: 2021R51004); NIH/NHLBI under Award Numbers R01HL145590; and NSF grants OAC-2212548.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huafeng Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ye, Y., Liu, H., Jiang, X., Toloubidokhti, M., Wang, L. (2023). A Spatial-Temporally Adaptive PINN Framework for 3D Bi-Ventricular Electrophysiological Simulations and Parameter Inference. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14226. Springer, Cham. https://doi.org/10.1007/978-3-031-43990-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43990-2_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43989-6

  • Online ISBN: 978-3-031-43990-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics