Skip to main content

Virtual Heart Models Help Elucidate the Role of Border Zone in Sustained Monomorphic Ventricular Tachycardia

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

Post-ischemic Ventricular Tachycardia (VT) is sustained by a depolarization wave re-entry through channel-like structures within the post-ischemic scar. These structures are usually formed by partially viable tissue, called Border Zone (BZ). Understanding the anatomical and electrical properties of the BZ is crucial to guide ablation therapy to the right targets, reducing the likelihood of VT recurrence. Virtual Heart methods can provide ablation guidance non-invasively, but they have high computational complexity and have shown limited capability to accurately reproduce the specific mechanisms responsible for clinically observed VT. These outstanding challenges undermine the utility of Virtual Hearts for high precision ablation guidance in clinical practice. In this work, fast phenomenological models are developed to efficiently and accurately simulate the re-entrant dynamics of VT as observed in 12-lead ECG. Two porcine models of Myocardial Infarction (MI) are used to generate personalized bi-ventricular models from pre-operative LGE-MRI images. Myocardial conductivity and action potential duration are estimated using sinus rhythm ECG measurements. Multiple hypotheses for the BZ tissue properties are tested, and optimal values are identified. These allow the Virtual Heart model to produce VTs with good agreements with measurements in terms of ECG lead polarity and VT cycle length. Efficient GPU implementation of the cardiac electrophysiology model allows computation of sustained monomorphic VT in times compatible with the clinical workflow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andreu, D., et al.: A QRS axis-based algorithm to identify the origin of scar-related ventricular tachycardia in the 17-segment American Heart Association model. Heart Rhythm 15(10), 1491–1497 (2018)

    Article  Google Scholar 

  2. Ashikaga, H., et al.: Feasibility of image-based simulation to estimate ablation target in human ventricular arrhythmia. Heart Rhythm 10(8), 1109–1116 (2013)

    Article  Google Scholar 

  3. Bayer, J.D., Blake, R.C., Plank, G., Trayanova, N.A.: A novel rule-based algorithm for assigning myocardial fiber orientation to computational heart models. Ann. Biomed. Eng. 40, 2243–2254 (2012)

    Article  Google Scholar 

  4. Campos, F.O., et al.: An automated near-real time computational method for induction and treatment of scar-related ventricular tachycardias. Med. Image Anal. 80, 102483 (2022)

    Article  Google Scholar 

  5. Campos, F.O., et al.: Factors promoting conduction slowing as substrates for block and reentry in infarcted hearts. Biophys. J. 117(12), 2361–2374 (2019)

    Article  Google Scholar 

  6. Corrado, C., Niederer, S.A.: A two-variable model robust to pacemaker behaviour for the dynamics of the cardiac action potential. Math. Biosci. 281, 46–54 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Costa, C.M., et al.: Determining anatomical and electrophysiological detail requirements for computational ventricular models of porcine myocardial infarction. Comput. Biol. Med. 141, 105061 (2022)

    Article  Google Scholar 

  8. De Bakker, J., et al.: Reentry as a cause of ventricular tachycardia in patients with chronic ischemic heart disease: electrophysiologic and anatomic correlation. Circulation 77(3), 589–606 (1988)

    Article  Google Scholar 

  9. Deng, D., Prakosa, A., Shade, J., Nikolov, P., Trayanova, N.A.: Sensitivity of ablation targets prediction to electrophysiological parameter variability in image-based computational models of ventricular tachycardia in post-infarction patients. Front. Physiol. 10, 628 (2019)

    Article  Google Scholar 

  10. Durrer, D., Van Dam, R.T., Freud, G., Janse, M., Meijler, F., Arzbaecher, R.: Total excitation of the isolated human heart. Circulation 41(6), 899–912 (1970)

    Article  Google Scholar 

  11. Estner, H.L., et al.: The critical isthmus sites of ischemic ventricular tachycardia are in zones of tissue heterogeneity, visualized by magnetic resonance imaging. Heart Rhythm 8(12), 1942–1949 (2011)

    Article  Google Scholar 

  12. Gard, J.J., Bader, W., Enriquez-Sarano, M., Frye, R.L., Michelena, H.I.: Uncommon cause of ST elevation. Circulation 123(9), e259–e261 (2011)

    Article  Google Scholar 

  13. Kong, W., Fakhari, N., Sharifov, O.F., Ideker, R.E., Smith, W.M., Fast, V.G.: Optical measurements of intramural action potentials in isolated porcine hearts using optrodes. Heart Rhythm 4(11), 1430–1436 (2007)

    Article  Google Scholar 

  14. Lee, A.W., et al.: A rule-based method for predicting the electrical activation of the heart with cardiac resynchronization therapy from non-invasive clinical data. Med. Image Anal. 57, 197–213 (2019)

    Article  Google Scholar 

  15. Lopez-Perez, A., Sebastian, R., Izquierdo, M., Ruiz, R., Bishop, M., Ferrero, J.M.: Personalized cardiac computational models: from clinical data to simulation of infarct-related ventricular tachycardia. Front. Physiol. 10, 580 (2019)

    Article  Google Scholar 

  16. Mendonca Costa, C., Plank, G., Rinaldi, C.A., Niederer, S.A., Bishop, M.J.: Modeling the electrophysiological properties of the infarct border zone. Front. Physiol. 9, 356 (2018)

    Article  Google Scholar 

  17. Mihalef, V., Mansi, T., Rapaka, S., Passerini, T.: Implementation of a patient-specific cardiac model. In: Artificial Intelligence for Computational Modeling of the Heart, pp. 43–94. Elsevier (2020)

    Google Scholar 

  18. Mihalef, V., Passerini, T., Mansi, T.: Multi-scale models of the heart for patient-specific simulations. In: Artificial Intelligence for Computational Modeling of the Heart, pp. 3–42. Elsevier (2020)

    Google Scholar 

  19. Mitchell, C.C., Schaeffer, D.G.: A two-current model for the dynamics of cardiac membrane. Bull. Math. Biol. 65(5), 767–793 (2003)

    Article  MATH  Google Scholar 

  20. Prakosa, A., et al.: Personalized virtual-heart technology for guiding the ablation of infarct-related ventricular tachycardia. Nat. Biomed. Eng. 2(10), 732–740 (2018)

    Article  Google Scholar 

  21. Rapaka, S., et al.: LBM-EP: Lattice-Boltzmann method for fast cardiac electrophysiology simulation from 3D images. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7511, pp. 33–40. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33418-4_5

    Chapter  Google Scholar 

  22. Santangeli, P., et al.: Comparative effectiveness of antiarrhythmic drugs and catheter ablation for the prevention of recurrent ventricular tachycardia in patients with implantable cardioverter-defibrillators: a systematic review and meta-analysis of randomized controlled trials. Heart Rhythm 13(7), 1552–1559 (2016)

    Article  Google Scholar 

  23. Schmidt, A., et al.: Infarct tissue heterogeneity by magnetic resonance imaging identifies enhanced cardiac arrhythmia susceptibility in patients with left ventricular dysfunction. Circulation 115(15), 2006–2014 (2007)

    Article  Google Scholar 

  24. Tranum-Jensen, J., Wilde, A., Vermeulen, J.T., Janse, M.J.: Morphology of electrophysiologically identified junctions between purkinje fibers and ventricular muscle in rabbit and pig hearts. Circ. Res. 69(2), 429–437 (1991)

    Article  Google Scholar 

  25. Trayanova, N.A., Doshi, A.N., Prakosa, A.: How personalized heart modeling can help treatment of lethal arrhythmias: a focus on ventricular tachycardia ablation strategies in post-infarction patients. Wiley Interdiscip. Rev. Syst. Biol. Med. 12(3), e1477 (2020)

    Article  Google Scholar 

  26. Zettinig, O., et al.: Data-driven estimation of cardiac electrical diffusivity from 12-lead ECG signals. Med. Image Anal. 18(8), 1361–1376 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The animal study was reviewed and approved by the Johns Hopkins University Animal Care and Use Committee (Baltimore, MD). Animal Welfare Assurance Number A3272-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Castañeda .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 32319 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Castañeda, E. et al. (2023). Virtual Heart Models Help Elucidate the Role of Border Zone in Sustained Monomorphic Ventricular Tachycardia. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14226. Springer, Cham. https://doi.org/10.1007/978-3-031-43990-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43990-2_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43989-6

  • Online ISBN: 978-3-031-43990-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics