Skip to main content

HACL-Net: Hierarchical Attention and Contrastive Learning Network for MRI-Based Placenta Accreta Spectrum Diagnosis

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14226))

  • 2857 Accesses

Abstract

Placenta Accreta Spectrum (PAS) can lead to high risks like excessive blood loss at the delivery. Therefore, prenatal screening with MRI is essential for delivery planning that ensures better clinical outcomes. For computer-aided PAS diagnosis, existing work mostly extracts radiomics features directly from ROI while ignoring the context information, or learns global semantic features with limited awareness of the focal area. Moreover, they usually select single or few MRI slices to represent the whole sequences, which can result in biased decisions. To deal with these issues, a novel end-to-end Hierarchical Attention and Contrastive Learning Network (HACL-Net) is proposed under the formulation of a multi-instance problem. Slice-level attention module is first designed to extract context-aware deep semantic features. These slice-wise features are then aggregated via the patient-level attention module into task-specific patient-wise representation for PAS prediction. A plug-and-play contrastive learning module is introduced to further improve the discriminating power of extracted features. Extensive experiments with ablation studies on a real clinical dataset show that HACL-Net can achieve state-of-the-art prediction performance with the effectiveness of each module.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Balntas, V., Riba, E., Ponsa, D., Mikolajczyk, K.: Learning local feature descriptors with triplets and shallow convolutional neural networks. In: Proceedings of the British Machine Vision Conference (BMVC), pp. 119.1-119.11 (2016)

    Google Scholar 

  2. Chopra, S., Hadsell, R., LeCun, Y.: Learning a similarity metric discriminatively, with application to face verification. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 1, pp. 539–546 (2005)

    Google Scholar 

  3. Cummins, C., Petoumenos, P., Wang, Z., Leather, H.: End-to-end deep learning of optimization heuristics. In: 2017 26th International Conference on Parallel Architectures and Compilation Techniques (PACT), pp. 219–232. IEEE (2017)

    Google Scholar 

  4. Han, M., et al.: Automatic segmentation of human placenta images with u-net. IEEE Access 7, 180083–180092 (2019)

    Article  Google Scholar 

  5. Ilse, M., Tomczak, J., Welling, M.: Attention-based deep multiple instance learning. In: International Conference on Machine Learning, pp. 2127–2136. PMLR (2018)

    Google Scholar 

  6. Jiao, M., Liu, H., Liu, J., Ouyang, H., Wang, X., Jiang, L., Yuan, H., Qian, Y.: Mal: Multi-modal attention learning for tumor diagnosis based on bipartite graph and multiple branches. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13433, pp. 175–185. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16437-8_17

    Chapter  Google Scholar 

  7. Kohli, M., Prevedello, L.M., Filice, R.W., Geis, J.R.: Implementing machine learning in radiology practice and research. Am. J. Roentgenol. 208(4), 754–760 (2017)

    Article  Google Scholar 

  8. Li, H., Chen, L., Han, H., Kevin Zhou, S.: Satr: slice attention with transformer for universal lesion detection. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, pp. 163–174. Springer Nature Switzerland, Cham (2022)

    Chapter  Google Scholar 

  9. Liu, X., et al.: What we know about placenta accreta spectrum (PAS). Eur. J. Obstet. Gynecol. Reprod. Biol. 259, 81–89 (2021)

    Article  Google Scholar 

  10. Oyelese, Y., Smulian, J.C.: Placenta previa, placenta accreta, and vasa previa. Obstet. Gynecol. 107(4), 927–941 (2006)

    Article  Google Scholar 

  11. Ren, H., et al.: Prediction of placenta accreta spectrum using texture analysis on coronal and sagittal T2-weighted imaging. Abdom. Radiol. 46, 5344–5352 (2021)

    Article  Google Scholar 

  12. Romeo, V., et al.: Machine learning analysis of MRI-derived texture features to predict placenta accreta spectrum in patients with placenta previa. Magn. Reson. Imaging 64, 71–76 (2019)

    Article  Google Scholar 

  13. Romeo, V., et al.: Prediction of placenta accreta spectrum in patients with placenta previa using clinical risk factors, ultrasound and magnetic resonance imaging findings. Radiol. Med. (Torino) 126(9), 1216–1225 (2021). https://doi.org/10.1007/s11547-021-01348-6

    Article  Google Scholar 

  14. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  15. Silver, R.M., Lyell, D.J.: Placenta accreta spectrum. Protocols for High-Risk Pregnancies: an evidence-based approach, pp. 571–580 (2020)

    Google Scholar 

  16. Tian, Y., et al.: Contrastive transformer-based multiple instance learning for weakly supervised polyp frame detection. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, pp. 88–98. Springer Nature Switzerland, Cham (2022). https://doi.org/10.1007/978-3-031-16437-8_9

    Chapter  Google Scholar 

  17. Van Griethuysen, J.J., et al.: Computational radiomics system to decode the radiographic phenotype. Can. Res. 77(21), e104–e107 (2017)

    Article  Google Scholar 

  18. Wang, F., et al.: Residual attention network for image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3156–3164 (2017)

    Google Scholar 

  19. Wang, S., et al.: RMDL: recalibrated multi-instance deep learning for whole slide gastric image classification. Med. Image Anal. 58, 101549 (2019)

    Article  Google Scholar 

  20. Xuan, R., Li, T., Wang, Y., Xu, J., Jin, W.: Prenatal prediction and typing of placental invasion using MRI deep and radiomic features. Biomed. Eng. Online 20(1), 56 (2021)

    Article  Google Scholar 

  21. Yao, J., Zhu, X., Huang, J.: Deep multi-instance learning for survival prediction from whole slide images. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 496–504. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_55

    Chapter  Google Scholar 

  22. Yao, J., Zhu, X., Jonnagaddala, J., Hawkins, N., Huang, J.: Whole slide images based cancer survival prediction using attention guided deep multiple instance learning networks. Med. Image Anal. 65, 101789 (2020)

    Article  Google Scholar 

  23. Ye, Z., Xuan, R., Ouyang, M., Wang, Y., Xu, J., Jin, W.: Prediction of placenta accreta spectrum by combining deep learning and radiomics using t2wi: a multicenter study. Abdominal Radiol. 47(12), 4205–4218 (2022)

    Article  Google Scholar 

  24. Zhang, D., Zou, L., Zhou, X., He, F.: Integrating feature selection and feature extraction methods with deep learning to predict clinical outcome of breast cancer. IEEE Access 6, 28936–28944 (2018)

    Article  Google Scholar 

  25. Zhang, Y., et al.: Spatiotemporal attention for early prediction of hepatocellular carcinoma based on longitudinal ultrasound images. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13433, pp. 534–543. Springer, Cham (2022)

    Chapter  Google Scholar 

Download references

Acknowledgement

This research was supported by Dr. Hao Zhu’s team from Obstetrics and Gynecology Hospital affiliated to Fudan University in China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianyu Wang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2805 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lu, M., Wang, T., Zhu, H., Li, M. (2023). HACL-Net: Hierarchical Attention and Contrastive Learning Network for MRI-Based Placenta Accreta Spectrum Diagnosis. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14226. Springer, Cham. https://doi.org/10.1007/978-3-031-43990-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43990-2_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43989-6

  • Online ISBN: 978-3-031-43990-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics