Skip to main content

CTFlow: Mitigating Effects of Computed Tomography Acquisition and Reconstruction with Normalizing Flows

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14226))

  • 2827 Accesses

Abstract

Mitigating the effects of image appearance due to variations in computed tomography (CT) acquisition and reconstruction parameters is a challenging inverse problem. We present CTFlow, a normalizing flows-based method for harmonizing CT scans acquired and reconstructed using different doses and kernels to a target scan. Unlike existing state-of-the-art image harmonization approaches that only generate a single output, flow-based methods learn the explicit conditional density and output the entire spectrum of plausible reconstruction, reflecting the underlying uncertainty of the problem. We demonstrate how normalizing flows reduces variability in image quality and the performance of a machine learning algorithm for lung nodule detection. We evaluate the performance of CTFlow by 1) comparing it with other techniques on a denoising task using the AAPM-Mayo Clinical Low-Dose CT Grand Challenge dataset, and 2) demonstrating consistency in nodule detection performance across 186 real-world low-dose CT chest scans acquired at our institution. CTFlow performs better in the denoising task for both peak signal-to-noise ratio and perceptual quality metrics. Moreover, CTFlow produces more consistent predictions across all dose and kernel conditions than generative adversarial network (GAN)-based image harmonization on a lung nodule detection task. The code is available at https://github.com/hsu-lab/ctflow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sala, E., et al.: Unravelling tumour heterogeneity using next-generation imaging: radiomics, radiogenomics, and habitat imaging. Clin. Radiol. 72(1), 3 (2017). https://doi.org/10.1016/j.crad.2016.09.013

    Article  Google Scholar 

  2. Fave, X., et al.: Delta-radiomics features for the prediction of patient outcomes in non-small cell lung cancer. Sci. Rep. 7(1), 588 (2017). https://doi.org/10.1038/s41598-017-00665-z

    Article  Google Scholar 

  3. Aerts, H.J.: The potential of radiomic-based phenotyping in precision medicine: a review. JAMA Oncol. 2(12), 1636–1642 (2016). https://doi.org/10.1001/jamaoncol.2016.2631

    Article  Google Scholar 

  4. Aerts, H.J., et al.: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun. 5(1), 4006 (2014). https://doi.org/10.1038/ncomms5006

    Article  Google Scholar 

  5. Traverso, A., Wee, L., Dekker, A., Gillies, R.: repeatability and reproducibility of radiomic features: a systematic review. Int. J. Radiat. Oncol. Biol. Phys. 102(4), 1143–1158 (2018). https://doi.org/10.1016/j.ijrobp.2018.05.053

    Article  Google Scholar 

  6. Mackin, D., et al.: Measuring computed tomography scanner variability of radiomics features. Invest. Radiol. 50(11), 757–765 (2015). https://doi.org/10.1097/RLI.0000000000000180

    Article  Google Scholar 

  7. Lu, L., Ehmke, R.C., Schwartz, L.H., Zhao, B.: Assessing agreement between radiomic features computed for multiple CT imaging settings. PLoS ONE 11(12), e0166550 (2016). https://doi.org/10.1371/journal.pone.0166550

    Article  Google Scholar 

  8. Zhao, B., et al.: Reproducibility of radiomics for deciphering tumor phenotype with imaging. Sci. Rep. 6, 23428 (2016). https://doi.org/10.1038/srep23428

    Article  Google Scholar 

  9. Kalpathy-Cramer, J., et al.: Radiomics of lung nodules: a multi-institutional study of robustness and agreement of quantitative imaging features. Tomography. 2(4), 430–437 (2016). https://doi.org/10.18383/j.tom.2016.00235

    Article  Google Scholar 

  10. Lo, P., Young, S., Kim, H.J., Brown, M.S., McNitt-Gray, M.F.: Variability in CT lung-nodule quantification: effects of dose reduction and reconstruction methods on density and texture based features. Med. Phys. 43(8), 4854 (2016). https://doi.org/10.1118/1.4954845

    Article  Google Scholar 

  11. Nan, Y., et al.: Data harmonisation for information fusion in digital healthcare: a state-of-the-art systematic review, meta-analysis and future research directions. Inf. Fusion 82, 99–122 (2022). https://doi.org/10.1016/j.inffus.2022.01.001

    Article  Google Scholar 

  12. Dinh, L., Sohl-Dickstein, J., Bengio, S.: Density estimation using Real NVP (2016)

    Google Scholar 

  13. Lugmayr, A., Danelljan, M., Van Gool, L., Timofte, R.: SRFlow: learning the super-resolution space with normalizing flow. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12350, pp. 715–732. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58558-7_42

    Chapter  Google Scholar 

  14. Denker, A., Schmidt, M., Leuschner, J., Maass, P., Behrmann, J.: Conditional normalizing flows for low-dose computed tomography image reconstruction (2020)

    Google Scholar 

  15. Zabic, S., Wang, Q., Morton, T., Brown, K.M.: A low dose simulation tool for CT systems with energy integrating detectors. Med. Phys. 40(3), 031102 (2013). https://doi.org/10.1118/1.4789628

    Article  Google Scholar 

  16. Dinh, L., Krueger, D., Bengio, Y.: Nice: non-linear independent components estimation. arXiv preprint arXiv:14108516 (2014)

  17. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–56. PMLR (2015)

    Google Scholar 

  18. Kingma, D.P., Dhariwal, P.: Glow: generative flow with invertible 1x1 convolutions. In: Advances in Neural Information Processing Systems, vol. 31 (2018)

    Google Scholar 

  19. Wang, X., et al.: EsrGAN: enhanced super-resolution generative adversarial networks. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11133, pp. 63–79. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11021-5_5

    Chapter  Google Scholar 

  20. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 586–595 (2018)

    Google Scholar 

  21. Wolterink, J.M., Leiner, T., Viergever, M.A., Isgum, I.: Generative adversarial networks for noise reduction in low-dose CT. IEEE Trans. Med. Imaging 36(12), 2536–2545 (2017). https://doi.org/10.1109/TMI.2017.2708987

    Article  Google Scholar 

  22. Yang, Q., et al.: Low-dose CT image denoising using a generative adversarial network with Wasserstein distance and perceptual loss. IEEE Trans. Med. Imaging. 37(6), 1348–1357 (2018). https://doi.org/10.1109/TMI.2018.2827462

    Article  Google Scholar 

  23. Wei, L., Lin, Y., Hsu, W.: Using a generative adversarial network for CT normalization and its impact on radiomic features. In: IEEE International Symposium on Biomedical Imaging. Iowa City, IA (2020)

    Google Scholar 

  24. Lim, B., Son, S., Kim, H., Nah, S., Lee, K.M.: Enhanced deep residual networks for single image super-resolution (2017)

    Google Scholar 

  25. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans Image Process. 16(8), 2080–2095 (2007). https://doi.org/10.1109/tip.2007.901238

    Article  MathSciNet  Google Scholar 

  26. Lawrence, I., Lin, K.: A concordance correlation coefficient to evaluate reproducibility. Biometrics, 255–268 (1989)

    Google Scholar 

  27. McBride, G.: A proposal for strength-of-agreement criteria for Lin’s concordance correlation coefficient. NIWA client report: HAM2005-062, p. 62 (2005)

    Google Scholar 

  28. Chan, A., Alaa, A., Qian, Z., Van Der Schaar, M.: Unlabelled data improves Bayesian uncertainty calibration under covariate shift. In: International Conference on Machine Learning, pp. 1392–402. PMLR (2020)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health under awards R56 EB031993 and R01 EB031993. The authors thank John M. Hoffman, Nastaran Emaminejad, and Michael McNitt-Gray for providing access to the UCLA low-dose CT dataset. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Hsu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2771 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wei, L., Yadav, A., Hsu, W. (2023). CTFlow: Mitigating Effects of Computed Tomography Acquisition and Reconstruction with Normalizing Flows. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14226. Springer, Cham. https://doi.org/10.1007/978-3-031-43990-2_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43990-2_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43989-6

  • Online ISBN: 978-3-031-43990-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics