Skip to main content

Geometry-Adaptive Network for Robust Detection of Placenta Accreta Spectrum Disorders

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14226))

  • 2847 Accesses

Abstract

Placenta accreta spectrum (PAS) is a high-risk obstetric disorder associated with significant morbidity and mortality. Since the abnormal invasion usually occurs near the uteroplacental interface, there is a large geometry variation in the lesion bounding boxes, which considerably degrades the detection performance. In addition, due to the confounding visual representations of PAS, the diagnosis highly depends on the clinical experience of radiologists, which easily results in inaccurate bounding box annotations. In this paper, we propose a geometry-adaptive network for robust PAS detection. Specifically, to deal with the geometric prior missing problem, we design a Geometry-adaptive Label Assignment (GA-LA) strategy and a Geometry-adaptive RoI Fusion (GA-RF) module. The GA-LA strategy dynamically selects positive PAS candidates (RoIs) for each lesion according to its shape information. The GA-RF module aggregates the multi-scale RoI features based on the geometry distribution of proposals. Moreover, we develop a Lesion-aware Detection Head (LA-Head) to leverage high-quality predictions to iteratively refine inaccurate annotations with a novel multiple instance learning paradigm. Experimental results under both clean and noisy labels indicate that our method achieves state-of-the-art performance and demonstrate promising assistance for PAS diagnosis in clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baughman, W.C., Corteville, J.E., Shah, R.R.: Placenta accreta: spectrum of us and MR imaging findings. Radiographics 28(7), 1905–1916 (2008)

    Article  Google Scholar 

  2. Bilen, H., Vedaldi, A.: Weakly supervised deep detection networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2846–2854 (2016)

    Google Scholar 

  3. Cai, Z., Vasconcelos, N.: Cascade R-CNN: delving into high quality object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6154–6162 (2018)

    Google Scholar 

  4. Chen, K., et al.: Mmdetection: open mmlab detection toolbox and benchmark. arXiv preprint arXiv:1906.07155 (2019)

  5. El Gelany, S., et al.: Placenta accreta spectrum (PAS) disorders: incidence, risk factors and outcomes of different management strategies in a tertiary referral hospital in Minia, Egypt: a prospective study. BMC Pregnancy Childbirth 19, 1–8 (2019)

    Article  Google Scholar 

  6. Guo, C., Fan, B., Zhang, Q., Xiang, S., Pan, C.: AugFPN: improving multi-scale feature learning for object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12595–12604 (2020)

    Google Scholar 

  7. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  9. Hou, L., Lu, K., Xue, J., Li, Y.: Shape-adaptive selection and measurement for oriented object detection. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 923–932 (2022)

    Google Scholar 

  10. Jauniaux, E., Chantraine, F., Silver, R., Langhoff-Roos, J.: Figo placenta accreta diagnosis and management expert consensus panel. figo consensus guidelines on placenta accreta spectrum disorders: epidemiology. Int. J. Gynaecol. Obstet. 140(3), 265–273 (2018)

    Google Scholar 

  11. Jiang, B., Luo, R., Mao, J., Xiao, T., Jiang, Y.: Acquisition of localization confidence for accurate object detection. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 784–799 (2018)

    Google Scholar 

  12. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)

    Google Scholar 

  13. Liu, C., Wang, K., Lu, H., Cao, Z., Zhang, Z.: Robust object detection with inaccurate bounding boxes. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) European Conference on Computer Vision. LNCS, vol. 13670, pp. 53–69. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20080-9_4

    Chapter  Google Scholar 

  14. Liu, S., Qi, L., Qin, H., Shi, J., Jia, J.: Path aggregation network for instance segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8759–8768 (2018)

    Google Scholar 

  15. Masselli, G., et al.: Magnetic resonance imaging in the evaluation of placental adhesive disorders: correlation with color doppler ultrasound. Eur. Radiol. 18, 1292–1299 (2008)

    Article  Google Scholar 

  16. Mathai, T.S., et al.: Detection of lymph nodes in T2 MRI using neural network ensembles. In: Lian, C., Cao, X., Rekik, I., Xu, X., Yan, P. (eds.) MLMI 2021. LNCS, vol. 12966, pp. 682–691. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87589-3_70

    Chapter  Google Scholar 

  17. Qi, H.: Prenatal assessment of placenta accreta spectrum disorders from ultrasound images using deep learning. Ph.D. thesis, University of Oxford (2019)

    Google Scholar 

  18. Qi, H., Collins, S., Noble, J.A.: Knowledge-guided pretext learning for utero-placental interface detection. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 582–593. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_57

    Chapter  Google Scholar 

  19. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, vol. 28 (2015)

    Google Scholar 

  20. Shao, Q., et al.: Deep learning and radiomics analysis for prediction of placenta invasion based on T2WI. Math. Biosci. Eng. 18(5), 6198–6215 (2021)

    Article  Google Scholar 

  21. Silver, R.M., Branch, D.W.: Placenta accreta spectrum. N. Engl. J. Med. 378(16), 1529–1536 (2018)

    Article  Google Scholar 

  22. Swinburne, N.C., et al.: Semisupervised training of a brain MRI tumor detection model using mined annotations. Radiology 303(1), 80–89 (2022)

    Article  Google Scholar 

  23. Tian, Z., Shen, C., Chen, H., He, T.: FCOS: fully convolutional one-stage object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9627–9636 (2019)

    Google Scholar 

  24. Tzutalin: Labelimg (2015). https://github.com/heartexlabs/labelImg

  25. Wan, F., Liu, C., Ke, W., Ji, X., Jiao, J., Ye, Q.: C-mil: continuation multiple instance learning for weakly supervised object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2199–2208 (2019)

    Google Scholar 

  26. Wan, Z., Chen, Y., Deng, S., Chen, K., Yao, C., Luo, J.: Slender object detection: diagnoses and improvements. arXiv preprint arXiv:2011.08529 (2020)

  27. Wang, S., et al.: Global-local attention network with multi-task uncertainty loss for abnormal lymph node detection in MR images. Med. Image Anal. 77, 102345 (2022)

    Article  Google Scholar 

  28. Xu, Y., Zhu, L., Yang, Y., Wu, F.: Training robust object detectors from noisy category labels and imprecise bounding boxes. IEEE Trans. Image Process. 30, 5782–5792 (2021)

    Article  Google Scholar 

  29. Xuan, R., Li, T., Wang, Y., Xu, J., Jin, W.: Prenatal prediction and typing of placental invasion using MRI deep and radiomic features. Biomed. Eng. Online 20(1), 56 (2021)

    Article  Google Scholar 

  30. Zhang, H., Chang, H., Ma, B., Wang, N., Chen, X.: Dynamic R-CNN: towards high quality object detection via dynamic training. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12360, pp. 260–275. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58555-6_16

    Chapter  Google Scholar 

  31. Zhang, S., Chi, C., Yao, Y., Lei, Z., Li, S.Z.: Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9759–9768 (2020)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 61972419), and the Natural Science Foundation of Hunan Province, China (No. 2021JJ30865 and 2023JJ30865).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hailan Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, Z. et al. (2023). Geometry-Adaptive Network for Robust Detection of Placenta Accreta Spectrum Disorders. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14226. Springer, Cham. https://doi.org/10.1007/978-3-031-43990-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43990-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43989-6

  • Online ISBN: 978-3-031-43990-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics