Skip to main content

VF-HM: Vision Loss Estimation Using Fundus Photograph for High Myopia

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

High myopia (HM) is a leading cause of irreversible vision loss due to its association with various ocular complications including myopic maculopathy (MM). Visual field (VF) sensitivity systematically quantifies visual function, thereby revealing vision loss, and is integral to the evaluation of HM-related complications. However, measuring VF is subjective and time-consuming as it highly relies on patient compliance. Conversely, fundus photographs provide an objective measurement of retinal morphology, which reflects visual function. Therefore, utilizing machine learning models to estimate VF from fundus photographs becomes a feasible alternative. Yet, estimating VF with regression models using fundus photographs fails to predict local vision loss, producing stationary nonsense predictions. To tackle this challenge, we propose a novel method for VF estimation that incorporates VF properties and is additionally regularized by an auxiliary task. Specifically, we first formulate VF estimation as an ordinal classification problem, where each VF point is interpreted as an ordinal variable rather than a continuous one, given that any VF point is a discrete integer with a relative ordering. Besides, we introduce an auxiliary task for MM severity classification to assist the generalization of VF estimation, as MM is strongly associated with vision loss in HM. Our method outperforms conventional regression by 16.61% in MAE metric on a real-world dataset. Moreover, our method is the first work for VF estimation using fundus photographs in HM, allowing for more convenient and accurate detection of vision loss in HM, which could be useful for not only clinics but also large-scale vision screenings.

Z. Yan and D. Liang—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Our code is available at https://github.com/yanzipei/VF-HM.

References

  1. Bar-David, D., Bar-David, L., Soudry, S., Fischer, A.: Impact of data augmentation on retinal oct image segmentation for diabetic macular edema analysis. In: MICCAI, pp. 148–158 (2021)

    Google Scholar 

  2. Cao, W., Mirjalili, V., Raschka, S.: Rank consistent ordinal regression for neural networks with application to age estimation. Pattern Recogn. Lett. 140, 325–331 (2020)

    Article  Google Scholar 

  3. Christopher, M., et al.: Deep learning approaches predict glaucomatous visual field damage from OCT optic nerve head EN face images and retinal nerve fiber layer thickness maps. Ophthalmology 127(3), 346–356 (2020)

    Article  Google Scholar 

  4. Datta, S., Mariottoni, E.B., Dov, D., Jammal, A.A., Carin, L., Medeiros, F.A.: Retinervenet: using recursive deep learning to estimate pointwise 24–2 visual field data based on retinal structure. Sci. Rep. 11(1), 1–10 (2021)

    Article  Google Scholar 

  5. Dery, L.M., Dauphin, Y.N., Grangier, D.: Auxiliary task update decomposition: The good, the bad and the neutral. In: ICLR (2021)

    Google Scholar 

  6. Du, Y., Czarnecki, W.M., Jayakumar, S.M., Farajtabar, M., Pascanu, R., Lakshminarayanan, B.: Adapting auxiliary losses using gradient similarity. arXiv preprint arXiv:1812.02224 (2018)

  7. Hayashi, K., et al.: Long-term pattern of progression of myopic maculopathy: a natural history study. Ophthalmology 117(8), 1595–1611 (2010)

    Article  Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  9. He, T., Zhang, Z., Zhang, H., Zhang, Z., Xie, J., Li, M.: Bag of tricks for image classification with convolutional neural networks. In: CVPR, pp. 558–567 (2019)

    Google Scholar 

  10. Holden, B.A., et al.: Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology 123(5), 1036–1042 (2016)

    Article  Google Scholar 

  11. Lee, J., et al.: Estimating visual field loss from monoscopic optic disc photography using deep learning model. Sci. Rep. 10(1), 1–10 (2020)

    Article  MathSciNet  Google Scholar 

  12. Lewis, R.A., Johnson, C.A., Keltner, J.L., Labermeier, P.K.: Variability of quantitative automated perimetry in normal observers. Ophthalmology 93(7), 878–881 (1986)

    Article  Google Scholar 

  13. Li, L., Lin, H.: Ordinal regression by extended binary classification. In: NeurIPS, pp. 865–872 (2006)

    Google Scholar 

  14. Lin, F., et al.: Classification of visual field abnormalities in highly myopic eyes without pathologic change. Ophthalmology 129(7), 803–812 (2022)

    Article  MathSciNet  Google Scholar 

  15. Müller, S.G., Hutter, F.: Trivialaugment: tuning-free yet state-of-the-art data augmentation. In: ICCV, pp. 754–762 (2021)

    Google Scholar 

  16. Ohno-Matsui, K., et al.: IMI pathologic myopia. Investigative Ophthalmol. Visual Sci. 62(5), 5–5 (2021)

    Article  Google Scholar 

  17. Panwar, N., et al.: Fundus photography in the 21st century-a review of recent technological advances and their implications for worldwide healthcare. Telemedicine and e-Health 22(3), 198–208 (2016)

    Article  MathSciNet  Google Scholar 

  18. Park, K., Kim, J., Lee, J.: A deep learning approach to predict visual field using optical coherence tomography. PLoS ONE 15(7), 1–19 (2020)

    Article  Google Scholar 

  19. Phu, J., Khuu, S.K., Yapp, M., Assaad, N., Hennessy, M.P., Kalloniatis, M.: The value of visual field testing in the era of advanced imaging: clinical and psychophysical perspectives. Clin. Exp. Optom. 100(4), 313–332 (2017)

    Article  Google Scholar 

  20. Roy, A.G., et al.: Relaynet: retinal layer and fluid segmentation of macular optical coherence tomography using fully convolutional networks. Biomed. Opt. Express 8(8), 3627–3642 (2017)

    Article  Google Scholar 

  21. Silva, R.: Myopic maculopathy: a review. Ophthalmologica 228(4), 197–213 (2012)

    Article  Google Scholar 

  22. Vivien: Learning through auxiliary tasks. https://vivien000.github.io/blog/journal/learning-though-auxiliary_tasks.html

  23. Wang, S., Yan, Z., Zhang, D., Wei, H., Li, Z., Li, R.: Prototype knowledge distillation for medical segmentation with missing modality. In: ICASSP (2023)

    Google Scholar 

  24. Wang, S., Zhang, D., Yan, Z., Zhang, J., Li, R.: Feature alignment and uniformity for test time adaptation. In: CVPR (2023)

    Google Scholar 

  25. Wong, T.Y., Ferreira, A., Hughes, R., Carter, G., Mitchell, P.: Epidemiology and disease burden of pathologic myopia and myopic choroidal neovascularization: an evidence-based systematic review. Am. J. Ophthalmol. 157(1), 9-25.e12 (2014)

    Article  Google Scholar 

  26. Xiao, O., et al.: Distribution and severity of myopic maculopathy among highly myopic eyes. Investigative Ophthalmol. Visual Sci. 59(12), 4880–4885 (2018)

    Article  Google Scholar 

  27. Xie, S., et al.: Structural abnormalities in the papillary and peripapillary areas and corresponding visual field defects in eyes with pathologic myopia. Investigative Ophthal. Visual Sci. 63(4), 13–13 (2022)

    Article  Google Scholar 

  28. Xu, L., et al.: Predicting the glaucomatous central 10-degree visual field from optical coherence tomography using deep learning and tensor regression. Am. J. Ophthalmol. 218, 304–313 (2020)

    Article  Google Scholar 

  29. Xu, L., Asaoka, R., Kiwaki, T., Murata, H., Fujino, Y., Yamanishi, K.: Pami: a computational module for joint estimation and progression prediction of glaucoma. In: KDD, pp. 3826–3834 (2021)

    Google Scholar 

  30. Xu, L., et al.: Improving visual field trend analysis with oct and deeply regularized latent-space linear regression. Ophthalmol. Glaucoma 4(1), 78–88 (2021)

    Article  Google Scholar 

  31. Zhang, S., Yang, L., Mi, M.B., Zheng, X., Yao, A.: Improving deep regression with ordinal entropy. In: ICLR (2023)

    Google Scholar 

  32. Zhao, X., et al.: Morphological characteristics and visual acuity of highly myopic eyes with different severities of myopic maculopathy. Retina 40(3), 461–467 (2020)

    Article  Google Scholar 

  33. Zheng, Y., et al.: Glaucoma progression prediction using retinal thickness via latent space linear regression. In: KDD, pp. 2278–2286 (2019)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Research Institute for Artificial Intelligence of Things, The Hong Kong Polytechnic University, HK RGC Research Impact Fund No. R5060-19; and the Centre for Myopia Research, School of Optometry; the Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University; and Centre for Eye and Vision Research (CEVR), InnoHK CEVR Project 1.5, 17W Hong Kong Science Park, HKSAR. We thank Drs Rita Sum and Vincent Ng for their guidance on data analysis of clinical population; and Prof. Ruihua Wei for external validation of the model.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dong Liang or Linchuan Xu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 399 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yan, Z. et al. (2023). VF-HM: Vision Loss Estimation Using Fundus Photograph for High Myopia. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14226. Springer, Cham. https://doi.org/10.1007/978-3-031-43990-2_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43990-2_61

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43989-6

  • Online ISBN: 978-3-031-43990-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics