Skip to main content

BrainUSL: Unsupervised Graph Structure Learning for Functional Brain Network Analysis

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

The functional connectivity (FC) between brain regions is usually estimated through a statistical dependency method with functional magnetic resonance imaging (fMRI) data. It inevitably yields redundant and noise connections, limiting the performance of deep supervised models in brain disease diagnosis. Besides, the supervised signals of fMRI data are insufficient due to the shortage of labeled data. To address these issues, we propose an end-to-end unsupervised graph structure learning method for sufficiently capturing the structure or characteristics of the functional brain network itself without relying on manual labels. More specifically, the proposed method incorporates a graph generation module for automatically learning the discriminative graph structures of functional brain networks and a topology-aware encoding module for sufficiently capturing the structure information. Furthermore, we also design view consistency and correlation-guided contrastive regularizations. We evaluated our model on two real medical clinical applications: the diagnosis of Bipolar Disorder (BD) and Major Depressive Disorder (MDD). The results suggest that the proposed method outperforms state-of-the-art methods. In addition, our model is capable of identifying associated biomarkers and providing evidence of disease association. To the best of our knowledge, our work attempts to construct learnable functional brain networks with unsupervised graph structure learning. Our code is available at https://github.com/IntelliDAL/Graph/tree/main/BrainUSL.

P. Zhang and G. Wen—Contribute equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chavas, J., Guillon, L., Pascucci, M., Dufumier, B., Rivière, D., Mangin, J.F.: Unsupervised representation learning of cingulate cortical folding patterns. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022, Part I. LNCS, vol. 13431, pp. 77–87. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16431-6_8

    Chapter  Google Scholar 

  2. Eslami, T., Mirjalili, V., Fong, A., Laird, A.R., Saeed, F.: ASD-DiagNet: a hybrid learning approach for detection of autism spectrum disorder using fMRI data. Front. Neuroinform. 13, 70 (2019)

    Article  Google Scholar 

  3. Gadgil, S., Zhao, Q., Pfefferbaum, A., Sullivan, E.V., Adeli, E., Pohl, K.M.: Spatio-temporal graph convolution for resting-state fMRI analysis. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12267, pp. 528–538. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59728-3_52

    Chapter  Google Scholar 

  4. Imran, A.A.Z., Wang, S., Pal, D., Dutta, S., Zucker, E., Wang, A.: Multimodal contrastive learning for prospective personalized estimation of CT organ dose. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022, Part I. LNCS, vol. 13431, pp. 634–643. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16431-6_60

    Chapter  Google Scholar 

  5. Kawahara, J., et al.: BrainNetCNN: convolutional neural networks for brain networks; towards predicting neurodevelopment. Neuroimage 146, 1038–1049 (2017)

    Article  Google Scholar 

  6. Khosla, M., Jamison, K., Ngo, G.H., Kuceyeski, A., Sabuncu, M.R.: Machine learning in resting-state fMRI analysis. Magn. Reson. Imaging 64, 101–121 (2019)

    Article  Google Scholar 

  7. Kiranyaz, S., Avci, O., Abdeljaber, O., Ince, T., Gabbouj, M., Inman, D.J.: 1D convolutional neural networks and applications: a survey. Mech. Syst. Sig. Process. 151, 107398 (2021)

    Article  Google Scholar 

  8. Kumar, V., Garg, R.: Resting state functional connectivity alterations in individuals with autism spectrum disorders: a systematic review. medRxiv (2021)

    Google Scholar 

  9. Lawry Aguila, A., Chapman, J., Janahi, M., Altmann, A.: Conditional VAEs for confound removal and normative modelling of neurodegenerative diseases. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022, Part I. LNCS, vol. 13431, pp. 430–440. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16431-6_41

    Chapter  Google Scholar 

  10. Lee, W.H., Frangou, S.: Linking functional connectivity and dynamic properties of resting-state networks. Sci. Rep. 7(1), 16610 (2017)

    Article  Google Scholar 

  11. Lynch, C.J., Uddin, L.Q., Supekar, K., Khouzam, A., Phillips, J., Menon, V.: Default mode network in childhood autism: posteromedial cortex heterogeneity and relationship with social deficits. Biol. Psychiatry 74(3), 212–219 (2013)

    Article  Google Scholar 

  12. Nebel, M.B., et al.: Intrinsic visual-motor synchrony correlates with social deficits in autism. Biol. Psychiatry 79(8), 633–641 (2016)

    Article  Google Scholar 

  13. Radonjić, N.V., et al.: Structural brain imaging studies offer clues about the effects of the shared genetic etiology among neuropsychiatric disorders. Mol. Psychiatry 26(6), 2101–2110 (2021)

    Article  Google Scholar 

  14. Sauty, B., Durrleman, S.: Progression models for imaging data with longitudinal variational auto encoders. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022, Part I. LNCS, vol. 13431, pp. 3–13. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16431-6_1

    Chapter  Google Scholar 

  15. Seyfioğlu, M.S., et al.: Brain-aware replacements for supervised contrastive learning in detection of Alzheimer’s disease. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022, Part I. LNCS, vol. 13431, pp. 461–470. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16431-6_44

    Chapter  Google Scholar 

  16. Wang, Y., Kang, J., Kemmer, P.B., Guo, Y.: An efficient and reliable statistical method for estimating functional connectivity in large scale brain networks using partial correlation. Front. Neurosci. 10, 123 (2016)

    Article  Google Scholar 

  17. Wang, Z., et al.: Distribution-guided network thresholding for functional connectivity analysis in fMRI-based brain disorder identification. IEEE J. Biomed. Health Inform. 26(4), 1602–1613 (2021)

    Article  Google Scholar 

  18. Wen, G., Cao, P., Bao, H., Yang, W., Zheng, T., Zaiane, O.: MVS-GCN: a prior brain structure learning-guided multi-view graph convolution network for autism spectrum disorder diagnosis. Comput. Biol. Med. 142, 105239 (2022)

    Article  Google Scholar 

  19. Xia, M., Wang, J., He, Y.: BrainNet Viewer: a network visualization tool for human brain connectomics. PLoS ONE 8(7), e68910 (2013)

    Article  Google Scholar 

  20. Yan, C.G., Wang, X.D., Zuo, X.N., Zang, Y.F.: DPABI: data processing & analysis for (resting-state) brain imaging. Neuroinformatics 14(3), 339–351 (2016). https://doi.org/10.1007/s12021-016-9299-4

    Article  Google Scholar 

  21. Yan, K., Zhang, D.: Feature selection and analysis on correlated gas sensor data with recursive feature elimination. Sens. Actuators, B Chem. 212, 353–363 (2015)

    Article  Google Scholar 

  22. Yan, Y., Zhu, J., Duda, M., Solarz, E., Sripada, C., Koutra, D.: GroupINN: grouping-based interpretable neural network for classification of limited, noisy brain data. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 772–782 (2019)

    Google Scholar 

  23. Yin, W., Li, L., Wu, F.X.: Deep learning for brain disorder diagnosis based on fMRI images. Neurocomputing 469, 332–345 (2022)

    Article  Google Scholar 

  24. You, Y., Chen, T., Sui, Y., Chen, T., Wang, Z., Shen, Y.: Graph contrastive learning with augmentations. In: Advances in Neural Information Processing Systems, vol. 33, pp. 5812–5823 (2020)

    Google Scholar 

  25. Zhang, Z., Ding, J., Xu, J., Tang, J., Guo, F.: Multi-scale time-series kernel-based learning method for brain disease diagnosis. IEEE J. Biomed. Health Inform. 25(1), 209–217 (2020)

    Article  Google Scholar 

  26. Zhao, H., Nyholt, D.R.: Gene-based analyses reveal novel genetic overlap and allelic heterogeneity across five major psychiatric disorders. Hum. Genet. 136, 263–274 (2017). https://doi.org/10.1007/s00439-016-1755-6

    Article  Google Scholar 

  27. Zhou, Z.H., Sun, Y.Y., Li, Y.F.: Multi-instance learning by treating instances as non-IID samples. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 1249–1256 (2009)

    Google Scholar 

  28. Zhu, Y., Xu, W., Zhang, J., Liu, Q., Wu, S., Wang, L.: Deep graph structure learning for robust representations: a survey. arXiv preprint arXiv:2103.03036 (2021)

Download references

Acknowledgment

This paper is supported by the National Natural Science Foundation of China (No. 62076059), the Science Project of Liaoning province (2021-MS-105) and the 111 Project (B16009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Cao or Fei Wang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 201 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, P. et al. (2023). BrainUSL: Unsupervised Graph Structure Learning for Functional Brain Network Analysis. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14227. Springer, Cham. https://doi.org/10.1007/978-3-031-43993-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43993-3_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43992-6

  • Online ISBN: 978-3-031-43993-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics