Skip to main content

Learning Asynchronous Common and Individual Functional Brain Network for AD Diagnosis

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14227))

  • 2607 Accesses

Abstract

Construction and analysis of functional brain network (FBN) with rs-fMRI is a promising method to diagnose functional brain diseases. Traditional methods usually construct FBNs at the individual level for feature extraction and classification. There are several issues with these approaches. Firstly, due to the unpredictable interferences of noises and artifacts in rs-fMRI, these individual-level FBNs have large variability, leading to instability and unsatisfactory diagnosis accuracy. Secondly, the construction and analysis of FBNs are conducted in two successive steps without negotiation with or joint alignment for the target task. In this case, the two steps may not cooperate well. To address these issues, we propose to learn common and individual FBNs adaptively within the Transformer framework. The common FBN is shared, and it would regularize the FBN construction as prior knowledge, alleviating the variability and enabling the network to focus on these disease-specific individual functional connectivities (FCs). Both the common and individual FBNs are built by specially designed modules, whose parameters are jointly optimized with the rest of the network for FBN analysis in an end-to-end manner, improving the flexibility and discriminability of the model. Another limitation of the current methods is that the FCs are only measured with synchronous rs-fMRI signals of brain regions and ignore their possible asynchronous functional interactions. To better capture the actual FCs, the rs-fMRI signals are divided into short segments to enable modeling cross-spatiotemporal interactions. The superior performance of the proposed method is consistently demonstrated in early AD diagnosis tasks on ADNI2 and ADNI3 data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmadi, H., Fatemizadeh, E., Motie-Nasrabadi, A.: Identifying brain functional connectivity alterations during different stages of Alzheimer’s disease. Int. J. Neurosci. 132(10), 1005–1013 (2022)

    Article  Google Scholar 

  2. Bassett, D.S., Bullmore, E.T.: Small-world brain networks revisited. Neuroscientist 23(5), 499–516 (2017)

    Article  Google Scholar 

  3. Chen, H., Zhang, Y., Zhang, L., Qiao, L., Shen, D.: Estimating brain functional networks based on adaptively-weighted fMRI signals for MCI identification. Front. Aging Neurosci. 12, 595322 (2021)

    Article  Google Scholar 

  4. Deshpande, G., Santhanam, P., Hu, X.: Instantaneous and causal connectivity in resting state brain networks derived from functional MRI data. Neuroimage 54(2), 1043–1052 (2011)

    Article  Google Scholar 

  5. Deshpande, G., Sathian, K., Hu, X.: Assessing and compensating for zero-lag correlation effects in time-lagged Granger causality analysis of fMRI. IEEE Trans. Biomed. Eng. 57(6), 1446–1456 (2010)

    Article  Google Scholar 

  6. Esteban, O., et al.: fMRIPrep: a robust preprocessing pipeline for functional MRI. Nat. Methods 16(1), 111–116 (2019)

    Article  Google Scholar 

  7. Friston, K., Moran, R., Seth, A.K.: Analysing connectivity with Granger causality and dynamic causal modelling. Curr. Opin. Neurobiol. 23(2), 172–178 (2013)

    Article  Google Scholar 

  8. Gadgil, S., Zhao, Q., Pfefferbaum, A., Sullivan, E.V., Adeli, E., Pohl, K.M.: Spatio-temporal graph convolution for resting-state fMRI analysis. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12267, pp. 528–538. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59728-3_52

    Chapter  Google Scholar 

  9. Ghanbari, M., et al.: Alterations of dynamic redundancy of functional brain subnetworks in Alzheimer’s disease and major depression disorders. NeuroImage Clin. 33, 102917 (2022)

    Google Scholar 

  10. Kaiser, M.: A tutorial in connectome analysis: topological and spatial features of brain networks. Neuroimage 57(3), 892–907 (2011)

    Article  Google Scholar 

  11. Kawahara, J., et al.: BrainNetCNN: convolutional neural networks for brain networks; towards predicting neurodevelopment. Neuroimage 146, 1038–1049 (2017)

    Article  Google Scholar 

  12. Lee, H., Lee, D.S., Kang, H., Kim, B.N., Chung, M.K.: Sparse brain network recovery under compressed sensing. IEEE Trans. Med. Imaging 30(5), 1154–1165 (2011)

    Article  Google Scholar 

  13. Li, X., et al.: Braingnn: interpretable brain graph neural network for fMRI analysis. Med. Image Anal. 74, 102233 (2021)

    Article  Google Scholar 

  14. Li, Y., Liu, J., Tang, Z., Lei, B.: Deep spatial-temporal feature fusion from adaptive dynamic functional connectivity for MCI identification. IEEE Trans. Med. Imaging 39(9), 2818–2830 (2020)

    Article  Google Scholar 

  15. Li, Y., Yu, Z.L., Bi, N., Xu, Y., Gu, Z., Amari, S.I.: Sparse representation for brain signal processing: a tutorial on methods and applications. IEEE Signal Process. Mag. 31(3), 96–106 (2014)

    Article  Google Scholar 

  16. Liu, M., Zhang, H., Shi, F., Shen, D.: Building dynamic hierarchical brain networks and capturing transient meta-states for early mild cognitive impairment diagnosis. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12907, pp. 574–583. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87234-2_54

    Chapter  Google Scholar 

  17. Martins, A., Astudillo, R.: From softmax to sparsemax: a sparse model of attention and multi-label classification. In: International Conference on Machine Learning, pp. 1614–1623. PMLR (2016)

    Google Scholar 

  18. Metmer, H., Lu, J., Zhao, Q., Li, W., Lu, H.: Evaluating functional connectivity of executive control network and frontoparietal network in Alzheimer’s disease (2013)

    Google Scholar 

  19. Mitra, A., Snyder, A.Z., Hacker, C.D., Raichle, M.E.: Lag structure in resting-state fMRI. J. Neurophysiol. 111(11), 2374–2391 (2014)

    Article  Google Scholar 

  20. Qiu, H., Hou, B., Ren, B., Zhang, X.: Spatio-temporal tuples transformer for skeleton-based action recognition. arXiv preprint arXiv:2201.02849 (2022)

  21. Riaz, A., et al.: FCNet: a convolutional neural network for calculating functional connectivity from functional MRI. In: Wu, G., Laurienti, P., Bonilha, L., Munsell, B.C. (eds.) CNI 2017. LNCS, vol. 10511, pp. 70–78. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67159-8_9

    Chapter  Google Scholar 

  22. Shi, Y., et al.: ASMFS: adaptive-similarity-based multi-modality feature selection for classification of Alzheimer’s disease. Pattern Recogn. 126, 108566 (2022)

    Article  Google Scholar 

  23. Tzourio-Mazoyer, N., et al.: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15(1), 273–289 (2002)

    Article  Google Scholar 

  24. Varoquaux, G., Gramfort, A., Poline, J.B., Thirion, B.: Brain covariance selection: better individual functional connectivity models using population prior. In: Advances in Neural Information Processing Systems, vol. 23 (2010)

    Google Scholar 

  25. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  26. Wang, J., et al.: Disrupted functional brain connectome in individuals at risk for Alzheimer’s disease. Biol. Psychiat. 73(5), 472–481 (2013)

    Article  Google Scholar 

  27. Wee, C.Y., Yap, P.T., Zhang, D., Wang, L., Shen, D.: Group-constrained sparse fMRI connectivity modeling for mild cognitive impairment identification. Brain Struct. Funct. 219, 641–656 (2014)

    Article  Google Scholar 

  28. Zhang, H.Y., et al.: Detection of PCC functional connectivity characteristics in resting-state fMRI in mild Alzheimer’s disease. Behav. Brain Res. 197(1), 103–108 (2009)

    Article  MathSciNet  Google Scholar 

  29. Zhang, J., Zhou, L., Wang, L., Li, W.: Functional brain network classification with compact representation of SICE matrices. IEEE Trans. Biomed. Eng. 62(6), 1623–1634 (2015)

    Article  Google Scholar 

  30. Zhang, J., Zhou, L., Wang, L., Liu, M., Shen, D.: Diffusion kernel attention network for brain disorder classification. IEEE Trans. Med. Imaging 41(10), 2814–2827 (2022)

    Article  Google Scholar 

  31. Zhang, Y., et al.: Strength and similarity guided group-level brain functional network construction for MCI diagnosis. Pattern Recogn. 88, 421–430 (2019)

    Article  Google Scholar 

  32. Zhu, X., Cortes, C.R., Mathur, K., Tomasi, D., Momenan, R.: Model-free functional connectivity and impulsivity correlates of alcohol dependence: a resting-state study. Addict. Biol. 22(1), 206–217 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by National Natural Science Foundation of China (grant number 62101611), Guangdong Basic and Applied Basic Research Foundation (grant number 2022A1515011375, 2023A1515012278) and Shenzhen Science and Technology Program (grant number JCYJ20220530145411027, JCYJ20220818102414031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianjia Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tang, X., Zhang, X., Liu, M., Zhang, J. (2023). Learning Asynchronous Common and Individual Functional Brain Network for AD Diagnosis. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14227. Springer, Cham. https://doi.org/10.1007/978-3-031-43993-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43993-3_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43992-6

  • Online ISBN: 978-3-031-43993-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics