Skip to main content

Neural Pre-processing: A Learning Framework for End-to-End Brain MRI Pre-processing

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14227))

  • 3854 Accesses

Abstract

Head MRI pre-processing involves converting raw images to an intensity-normalized, skull-stripped brain in a standard coordinate space. In this paper, we propose an end-to-end weakly supervised learning approach, called Neural Pre-processing (NPP), for solving all three sub-tasks simultaneously via a neural network, trained on a large dataset without individual sub-task supervision. Because the overall objective is highly under-constrained, we explicitly disentangle geometric-preserving intensity mapping (skull-stripping and intensity normalization) and spatial transformation (spatial normalization). Quantitative results show that our model outperforms state-of-the-art methods which tackle only a single sub-task. Our ablation experiments demonstrate the importance of the architecture design we chose for NPP. Furthermore, NPP affords the user the flexibility to control each of these tasks at inference time. The code and model are freely-available at https://github.com/Novestars/Neural-Pre-processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In this work, the following ROIs were used to evaluate performance: brain stem (Bs), thalamus (Th), cerebellum cortex (Cbmlc), cerebellum white matter (Wm), cerebral white matter (Cblw), putamen (Pu), ventral DC (Vt), pallidum (Pa), caudate (Ca), lateral ventricle (LV), and hippocampus (Hi).

References

  1. Aine, C.J., et al.: Multimodal neuroimaging in schizophrenia: description and dissemination. Neuroinformatics 15, 343–364 (2017)

    Article  Google Scholar 

  2. Arar, M., Ginger, Y., Danon, D., Bermano, A.H., Cohen-Or, D.: Unsupervised multi-modal image registration via geometry preserving image-to-image translation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13410–13419 (2020)

    Google Scholar 

  3. Avants, B.B., Epstein, C.L., Grossman, M., Gee, J.C.: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med. Image Anal. 12, 26–41 (2008)

    Article  Google Scholar 

  4. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: VoxelMorph: a learning framework for deformable medical image registration. IEEE Trans. Med. Imaging 38, 1788–1800 (2019)

    Article  Google Scholar 

  5. Cox, R.W.: AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput. Biomed. Res. 29(3), 162–173 (1996)

    Article  Google Scholar 

  6. Dalca, A.V., Guttag, J., Sabuncu, M.R.: Anatomical priors in convolutional networks for unsupervised biomedical segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9290–9299 (2018)

    Google Scholar 

  7. Eskildsen, S.F., et al.: BEaST: brain extraction based on nonlocal segmentation technique. NeuroImage 59, 2362–2373 (2012)

    Article  Google Scholar 

  8. Ezhilarasan, K., et al.: Automatic brain extraction from MRI of human head scans using Helmholtz free energy principle and morphological operations. Biomed. Signal Process. Control 64, 102270 (2021)

    Article  Google Scholar 

  9. Fischl, B.: FreeSurfer. Neuroimage 62(2), 774–781 (2012)

    Article  Google Scholar 

  10. Glasser, M.F., et al.: The minimal preprocessing pipelines for the human connectome project. NeuroImage 80, 105–124 (2013)

    Article  Google Scholar 

  11. Gollub, R.L., et al.: The MCIC collection: a shared repository of multi-modal, multi-site brain image data from a clinical investigation of schizophrenia. Neuroinformatics 11, 367–388 (2013)

    Article  Google Scholar 

  12. Ha, D., Dai, A., Le, Q.V.: Hypernetworks (2016). http://arxiv.org/abs/1609.09106

  13. Holmes, A.J., et al.: Brain genomics superstruct project initial data release with structural, functional, and behavioral measures. Sci. Data 2, 1–16 (2015)

    Article  Google Scholar 

  14. Hoopes, A., Hoffmann, M., Fischl, B., Guttag, J., Dalca, A.V.: HyperMorph: amortized hyperparameter learning for image registration (2021). http://arxiv.org/abs/2101.01035

  15. Hoopes, A., Mora, J.S., Dalca, A.V., Fischl, B., Hoffmann, M.: SynthStrip: skull-stripping for any brain image. Neuroimage 260, 119474 (2022)

    Article  Google Scholar 

  16. Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance normalization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1501–1510 (2017)

    Google Scholar 

  17. Jaderberg, M., Simonyan, K., Zisserman, A., et al.: Spatial transformer networks. In: Advances in Neural Information Processing Systems, vol. 28 (2015)

    Google Scholar 

  18. Jadon, S.: A survey of loss functions for semantic segmentation. In: 2020 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 1–7. IEEE (2020)

    Google Scholar 

  19. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2014). http://arxiv.org/abs/1412.6980

  20. Marcus, D.S., Fotenos, A.F., Csernansky, J.G., Morris, J.C., Buckner, R.L.: Open access series of imaging studies: longitudinal MRI data in nondemented and demented older adults. J. Cogn. Neurosci. 22(12), 2677–2684 (2010)

    Article  Google Scholar 

  21. Mok, T.C., Chung, A.: Affine medical image registration with coarse-to-fine vision transformer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20835–20844 (2022)

    Google Scholar 

  22. Mueller, S.G., et al.: The Alzheimer’s disease neuroimaging initiative. Neuroimaging Clin. 15(4), 869–877 (2005)

    Article  Google Scholar 

  23. Osher, S., Burger, M., Goldfarb, D., Xu, J., Yin, W.: An iterative regularization method for total variation-based image restoration. Multiscale Model. Simul. 4, 460–489 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015, Part III. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  25. Sibley, M.H., Coxe, S.J.: The ADHD teen integrative data analysis longitudinal (TIDAL) dataset: background, methodology, and aims. BMC Psychiatry 20, 1–12 (2020)

    Article  Google Scholar 

  26. Smith, S.M., et al.: Advances in functional and structural MR image analysis and implementation as FSL, vol. 23 (2004)

    Google Scholar 

  27. Song, W., et al.: Jointly estimating bias field and reconstructing uniform MRI image by deep learning. J. Magn. Reson. 343, 107301 (2022)

    Google Scholar 

  28. Tustison, N.J., et al.: N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging 29(6), 1310–1320 (2010)

    Article  Google Scholar 

  29. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  30. Wang, A.Q., Dalca, A.V., Sabuncu, M.R.: Computing multiple image reconstructions with a single hypernetwork. Mach. Learn. Biomed. Imaging 1 (2022)

    Google Scholar 

  31. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13, 600–612 (2004)

    Article  Google Scholar 

  32. de Wilde, A., et al.: Alzheimer’s biomarkers in daily practice (abide) project: rationale and design. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring 6, 143–151 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinzi He .

Editor information

Editors and Affiliations

Ethics declarations

Funding

Funding for this project was in part provided by the NIH grant R01AG053949, and the NSF CAREER 1748377 grant.

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 129 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

He, X., Wang, A.Q., Sabuncu, M.R. (2023). Neural Pre-processing: A Learning Framework for End-to-End Brain MRI Pre-processing. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14227. Springer, Cham. https://doi.org/10.1007/978-3-031-43993-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43993-3_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43992-6

  • Online ISBN: 978-3-031-43993-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics