Skip to main content

Vertex Correspondence in Cortical Surface Reconstruction

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

Mesh-based cortical surface reconstruction is a fundamental task in neuroimaging that enables highly accurate measurements of brain morphology. Vertex correspondence between a patient’s cortical mesh and a group template is necessary for comparing cortical thickness and other measures at the vertex level. However, post-processing methods for generating vertex correspondence are time-consuming and involve registering and remeshing a patient’s surfaces to an atlas. Recent deep learning methods for cortex reconstruction have neither been optimized for generating vertex correspondence nor have they analyzed the quality of such correspondence. In this work, we propose to learn vertex correspondence by optimizing an L1 loss on registered surfaces instead of the commonly used Chamfer loss. This results in improved inter- and intra-subject correspondence suitable for direct group comparison and atlas-based parcellation. We demonstrate that state-of-the-art methods provide insufficient correspondence for mapping parcellations, highlighting the importance of optimizing for accurate vertex correspondence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/ai-med/V2CC.

References

  1. Desikan, R.S., et al.: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage 31(3), 968–980 (2006)

    Google Scholar 

  2. Hoopes, A., Greve, D.: TopoFit GitHub repository. https://github.com/ahoopes/topofit. Accessed 04 Mar 2023

  3. Bongratz, F., Rickmann, A.M., Pölsterl, S., Wachinger, C.: Vox2Cortex: fast explicit reconstruction of cortical surfaces from 3D MRI scans with geometric deep neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20773–20783 (2022)

    Google Scholar 

  4. Cruz, R.S., Lebrat, L., Bourgeat, P., Fookes, C., Fripp, J., Salvado, O.: DeepCSR: a 3D deep learning approach for cortical surface reconstruction. In: 2021 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 806–815 (2021)

    Google Scholar 

  5. Dahnke, R., Yotter, R.A., Gaser, C.: Cortical thickness and central surface estimation. Neuroimage 65, 336–348 (2013)

    Article  Google Scholar 

  6. Bongratz, F., Bongratz, F., Rickmann, A. M.: Vox2Cortex github repository. https://github.com/ai-med/Vox2Cortex. Accessed 04 Mar 2023

  7. Fischl, B., Sereno, M., Tootell, R., Dale, A.: High-resolution inter-subject averaging and a coordinate system for the cortical surface. Hum. Brain Mapp. 8(4), 272–284 (1999).https://surfer.nmr.mgh.harvard.edu/ftp/articles/fischl99-morphing.pdf

  8. Fischl, B.: FreeSurfer. Neuroimage 62(2), 774–781 (2012)

    Article  Google Scholar 

  9. Fischl, B., Sereno, M.I., Dale, A.M.: Cortical surface-based analysis: II: inflation, flattening, and a surface-based coordinate system. Neuroimage 9(2), 195–207 (1999)

    Article  Google Scholar 

  10. Henschel, L., Conjeti, S., Estrada, S., Diers, K., Fischl, B., Reuter, M.: FastSurfer - a fast and accurate deep learning based neuroimaging pipeline. Neuroimage 219, 117012 (2020)

    Article  Google Scholar 

  11. Hoopes, A., Iglesias, J.E., Fischl, B., Greve, D., Dalca, A.V.: TopoFit: rapid reconstruction of topologically-correct cortical surfaces. In: Medical Imaging with Deep Learning (2021)

    Google Scholar 

  12. Klein, A., Tourville, J.: 101 labeled brain images and a consistent human cortical labeling protocol. Front. Neurosci. 6, 171 (2012). https://doi.org/10.3389/fnins.2012.00171

    Article  Google Scholar 

  13. Lebrat, L., et al.: CorticalFlow: a diffeomorphic mesh transformer network for cortical surface reconstruction. In: Advances in Neural Information Processing Systems, vol. 34 (2021)

    Google Scholar 

  14. Lerch, J.P., Pruessner, J.C., Zijdenbos, A.P., Hampel, H., Teipel, S.J., Evans, A.C.: Focal decline of cortical thickness in Alzheimer’s disease identified by computational neuroanatomy. Cereb. Cortex 15(7), 995–1001 (2005)

    Article  Google Scholar 

  15. Ma, Q., Li, L., Robinson, E.C., Kainz, B., Rueckert, D., Alansary, A.: CortexODE: learning cortical surface reconstruction by neural odes. IEEE Trans. Med. Imaging 42, 430–443 (2022)

    Article  Google Scholar 

  16. Maclaren, J.R., Han, Z., Vos, S.B., Fischbein, N.J., Bammer, R.: Reliability of brain volume measurements: a test-retest dataset. Sci. Data 1, 1–9 (2014)

    Article  Google Scholar 

  17. Roe, J.M., et al.: Asymmetric thinning of the cerebral cortex across the adult lifespan is accelerated in Alzheimer’s disease. Nat. Commun. 12(1), 721 (2021)

    Article  Google Scholar 

  18. Santa Cruz, R., et al.: CorticalFlow++. https://bitbucket.csiro.au/projects/CRCPMAX/repos/corticalflow/browse. Accessed 04 Mar 2023

  19. Santa Cruz, R., et al.: CorticalFlow++: boosting cortical surface reconstruction accuracy, regularity, and interoperability. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13435, pp. 496–505. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16443-9_48

    Chapter  Google Scholar 

  20. Shaw, M.E., Sachdev, P.S., Anstey, K.J., Cherbuin, N.: Age-related cortical thinning in cognitively healthy individuals in their 60s: the path through life study. Neurobiol. Aging 39, 202–209 (2016). https://doi.org/10.1016/j.neurobiolaging.2015.12.009

    Article  Google Scholar 

  21. Singh, V., Chertkow, H., Lerch, J.P., Evans, A.C., Dorr, A.E., Kabani, N.J.: Spatial patterns of cortical thinning in mild cognitive impairment and Alzheimer’s disease. Brain 129(11), 2885–2893 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the German Research Foundation and the Federal Ministry of Education and Research in the call for Computational Life Sciences (DeepMentia, 031L0200A). We gratefully acknowledge the computational resources provided by the Leibniz Supercomputing Centre (www.lrz.de).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne-Marie Rickmann .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 108 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rickmann, AM., Bongratz, F., Wachinger, C. (2023). Vertex Correspondence in Cortical Surface Reconstruction. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14227. Springer, Cham. https://doi.org/10.1007/978-3-031-43993-3_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43993-3_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43992-6

  • Online ISBN: 978-3-031-43993-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics