Skip to main content

Path-Based Heterogeneous Brain Transformer Network for Resting-State Functional Connectivity Analysis

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

Brain functional connectivity analysis is important for understanding brain development, aging, sexual distinction and brain disorders. Existing methods typically adopt the resting-state functional connectivity (rs-FC) measured by functional MRI as an effective tool, while they either neglect the importance of information exchange between different brain regions or the heterogeneity of brain activities. To address these issues, we propose a Path-based Heterogeneous Brain Transformer Network (PH-BTN) for analyzing rs-FC. Specifically, to integrate the path importance and heterogeneity of rs-FC for a comprehensive description of the brain, we first construct the brain functional network as a path-based heterogeneous graph using prior knowledge and gain initial edge features from rs-FC. Then, considering the constraints of graph convolution in aggregating long-distance and global information, we design a Heterogeneous Path Graph Transformer Convolution (HP-GTC) module to extract edge features by aggregating different paths’ information. Furthermore, we adopt Squeeze-and-Excitation (SE) with HP-GTC modules, which can alleviate the over-smoothing problem and enhance influential features. Finally, we apply a readout layer to generate the final graph embedding to estimate brain age and gender, and thoroughly evaluate the PH-BTN on the Baby Connectome Project (BCP) dataset. Experimental results demonstrate the superiority of PH-BTN over other state-of-the-art methods. The proposed PH-BTN offers a powerful tool to investigate and explore brain functional connectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Axer, M., Amunts, K.: Scale matters: the nested human connectome. Science 378(6619), 500–504 (2022)

    Article  Google Scholar 

  2. Bao, A.M., Swaab, D.F.: Sex differences in the brain, behavior, and neuropsychiatric disorders. Neuroscientist 16(5), 550–565 (2010)

    Article  Google Scholar 

  3. Cai, H., Gao, Y., Liu, M.: Graph transformer geometric learning of brain networks using multimodal MR images for brain age estimation. IEEE Trans. Med. Imaging 42(2), 456–466 (2023)

    Article  Google Scholar 

  4. Cole, J.H., Franke, K.: Predicting age using neuroimaging: innovative brain ageing biomarkers. Trends Neurosci. 40(12), 681–690 (2017)

    Article  Google Scholar 

  5. Friston, K.J.: Functional and effective connectivity in neuroimaging: a synthesis. Hum. Brain Mapp. 2(1–2), 56–78 (1994)

    Article  Google Scholar 

  6. Gadgil, S., Zhao, Q., Pfefferbaum, A., Sullivan, E.V., Adeli, E., Pohl, K.M.: Spatio-temporal graph convolution for resting-state fMRI analysis. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12267, pp. 528–538. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59728-3_52

    Chapter  Google Scholar 

  7. Gao, W., Alcauter, S., Smith, J.K., Gilmore, J.H., Lin, W.: Development of human brain cortical network architecture during infancy. Brain Struct. Funct. 220, 1173–1186 (2015)

    Article  Google Scholar 

  8. He, S., Grant, P.E., Ou, Y.: Global-local transformer for brain age estimation. IEEE Trans. Med. Imaging 41(1), 213–224 (2021)

    Article  Google Scholar 

  9. Hou, Y., et al.: Ageing as a risk factor for neurodegenerative disease. Nat. Rev. Neurol. 15(10), 565–581 (2019)

    Article  Google Scholar 

  10. Howell, B.R., et al.: The UNC/UMN baby connectome project (BCP): an overview of the study design and protocol development. Neuroimage 185, 891–905 (2019)

    Article  Google Scholar 

  11. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  12. Jung, J., Cloutman, L.L., Binney, R.J., Ralph, M.A.L.: The structural connectivity of higher order association cortices reflects human functional brain networks. Cortex 97, 221–239 (2017)

    Google Scholar 

  13. Kan, X., Dai, W., Cui, H., Zhang, Z., Guo, Y., Yang, C.: Brain network transformer. arXiv preprint arXiv:2210.06681 (2022)

  14. Kawahara, J., et al.: Brainnetcnn: convolutional neural networks for brain networks; towards predicting neurodevelopment. Neuroimage 146, 1038–1049 (2017)

    Article  Google Scholar 

  15. Kim, B.H., Ye, J.C.: Understanding graph isomorphism network for rs-fMRI functional connectivity analysis. Front. Neurosci. 14, 630 (2020)

    Article  Google Scholar 

  16. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  17. Li, X., et al.: BrainGNN: interpretable brain graph neural network for fMRI analysis. Med. Image Anal. 74, 102233 (2021)

    Article  Google Scholar 

  18. Li, X., et al.: Pooling regularized graph neural network for fMRI biomarker analysis. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12267, pp. 625–635. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59728-3_61

    Chapter  Google Scholar 

  19. Li, Y., et al.: Brain connectivity based graph convolutional networks and its application to infant age prediction. IEEE Trans. Med. Imaging 41(10), 2764–2776 (2022)

    Article  Google Scholar 

  20. Nikolentzos, G., Dasoulas, G., Vazirgiannis, M.: K-hop graph neural networks. Neural Netw. 130, 195–205 (2020)

    Article  MATH  Google Scholar 

  21. Thiebaut de Schotten, M., Forkel, S.J.: The emergent properties of the connected brain. Science 378(6619), 505–510 (2022)

    Google Scholar 

  22. Shi, G., Zhu, Y., Liu, W., Yao, Q., Li, X.: Heterogeneous graph-based multimodal brain network learning. arXiv e-prints pp. arXiv-2110 (2021)

    Google Scholar 

  23. Smith, S.M., et al.: Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23, S208–S219 (2004)

    Article  Google Scholar 

  24. Van Den Heuvel, M.P., Pol, H.E.H.: Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur. Neuropsychopharmacol. 20(8), 519–534 (2010)

    Article  Google Scholar 

  25. Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y., et al.: Graph attention networks. Stat 1050(20), 10–48550 (2017)

    Google Scholar 

  26. Wang, L., Li, K., Hu, X.P.: Graph convolutional network for fMRI analysis based on connectivity neighborhood. Netw. Neurosci. 5(1), 83–95 (2021)

    Article  Google Scholar 

  27. Weis, S., Patil, K.R., Hoffstaedter, F., Nostro, A., Yeo, B.T., Eickhoff, S.B.: Sex classification by resting state brain connectivity. Cereb. Cortex 30(2), 824–835 (2020)

    Article  Google Scholar 

  28. Wen, X., Wang, R., Yin, W., Lin, W., Zhang, H., Shen, D.: Development of dynamic functional architecture during early infancy. Cereb. Cortex 30(11), 5626–5638 (2020)

    Article  Google Scholar 

  29. Wu, K., Taki, Y., Sato, K., Hashizume, H., Sassa, Y., et al.: Topological organization of functional brain networks in healthy children: differences in relation to age, sex, and intelligence. PLoS ONE 8(2), e55347 (2013)

    Article  Google Scholar 

  30. Yao, D., Yang, E., Sun, L., Sui, J., Liu, M.: Integrating multimodal MRIs for adult ADHD identification with heterogeneous graph attention convolutional network. In: Rekik, I., Adeli, E., Park, S.H., Schnabel, J. (eds.) PRIME 2021. LNCS, vol. 12928, pp. 157–167. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87602-9_15

    Chapter  Google Scholar 

  31. Yin, W., Li, L., Wu, F.X.: A graph attention neural network for diagnosing ASD with fMRI data. In: 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 1131–1136. IEEE (2021)

    Google Scholar 

  32. Zhang, H., et al.: Classification of brain disorders in rs-fMRI via local-to-global graph neural networks. IEEE Trans. Med. Imaging 42(2), 444–455 (2023)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Guangdong Key Laboratory of Human Digital Twin Technology (2022B1212010004) and Fundamental Research Funds for the Central Universities (2022ZYGXZR104). This work also utilized approaches developed by the efforts of the UNC/UMN Baby Connectome Project Consortium.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin Zhang or Gang Li .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 4754 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fang, R. et al. (2023). Path-Based Heterogeneous Brain Transformer Network for Resting-State Functional Connectivity Analysis. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14227. Springer, Cham. https://doi.org/10.1007/978-3-031-43993-3_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43993-3_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43992-6

  • Online ISBN: 978-3-031-43993-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics