Skip to main content

Disentangling Site Effects with Cycle-Consistent Adversarial Autoencoder for Multi-site Cortical Data Harmonization

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

Modern multi-site neuroimaging studies are known to be biased by significant site effects observed in imaging data and their derived structural and functional features. Although many statistical models and deep learning methods have been proposed to eliminate the site effects while maintaining biological characteristics, they have two major drawbacks. First, statistical models are applicable for harmonizing regional-level data but are inherently not suitable to represent the complex non-linear mapping of vertex-wise cortical property maps. Second, existing deep learning methods can only harmonize data between two sites, which are practically less useful in multi-site data harmonization scenario and also ignore the rich information in the whole dataset. To address these issues, we develop a novel, flexible deep learning method to harmonize multi-site cortical surface property maps. Specifically, to detect and remove site effects, we employ a surface-based autoencoder and decompose the encoded cortical features into site-related and site-unrelated components and use an adversarial strategy to encourage the disentanglement. Then decoding the site-unrelated features with other site features can generate mappings across different sites. To learn more controllable and meaningful mappings, we enforce the cycle consistency between forward and backward mappings. Our method can thus efficiently learn rich information from the whole dataset and generate realistic harmonized surface maps at the target site. Experiments on harmonizing infant cortical thickness maps of 2,342 scans from four sites with different scanners and imaging protocols validate the superior performance of our method on both site effects removal and biological variability preservation compared to other methods. To the best of our knowledge, this is the largest validation of different methods on infant cortical data harmonization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bzdok, D.: Classical statistics and statistical learning in imaging neuroscience. Front. Neurosci. 11, 543 (2017)

    Article  Google Scholar 

  2. Cackowski, S., Barbier, E.L., Dojat, M., Christen, T.: ImUnity: a generalizable VAE-GAN solution for multicenter MR image harmonization. Med. Image Anal. 88, 102799 (2023)

    Article  Google Scholar 

  3. Desikan, R.S., et al.: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31(3), 968–980 (2006)

    Article  Google Scholar 

  4. Dewey, B.E., et al.: DeepHarmony: a deep learning approach to contrast harmonization across scanner changes. Magn. Reson. Imaging 64, 160–170 (2019)

    Article  Google Scholar 

  5. Ding, Z., et al.: Guided variational autoencoder for disentanglement learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7920–7929 (2020)

    Google Scholar 

  6. Fischl, B.: FreeSurfer. Neuroimage 62(2), 774–781 (2012)

    Article  Google Scholar 

  7. Fortin, J.P., et al.: Harmonization of cortical thickness measurements across scanners and sites. Neuroimage 167, 104–120 (2018)

    Article  Google Scholar 

  8. Frisoni, G.B., Fox, N.C., Jack, C.R., Jr., Scheltens, P., Thompson, P.M.: The clinical use of structural MRI in Alzheimer disease. Nat. Rev. Neurol. 6(2), 67–77 (2010)

    Article  Google Scholar 

  9. Ganin, Y., et al.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(1), 1–35 (2016)

    MathSciNet  MATH  Google Scholar 

  10. Goodfellow, I., et al.: Generative adversarial networks. Commun. ACM 63(11), 139–144 (2020)

    Article  MathSciNet  Google Scholar 

  11. Guan, H., Liu, M.: DomainATM: domain adaptation toolbox for medical data analysis. NeuroImage 268, 119863 (2023)

    Article  Google Scholar 

  12. Hazlett, H.C., et al.: Early brain development in infants at high risk for autism spectrum disorder. Nature 542(7641), 348–351 (2017)

    Article  Google Scholar 

  13. Howell, B.R., et al.: The UNC/UMN baby connectome project (BCP): an overview of the study design and protocol development. Neuroimage 185, 891–905 (2019)

    Article  Google Scholar 

  14. Hu, F., et al.: Image harmonization: a review of statistical and deep learning methods for removing batch effects and evaluation metrics for effective harmonization. NeuroImage 274, 120125 (2023)

    Google Scholar 

  15. Ij, H.: Statistics versus machine learning. Nat. Meth. 15(4), 233 (2018)

    Article  Google Scholar 

  16. Kazeminia, S., et al.: GANs for medical image analysis. Artif. Intell. Med. 109, 101938 (2020)

    Article  Google Scholar 

  17. Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., Frey, B.: Adversarial autoencoders. arXiv preprint arXiv:1511.05644 (2015)

  18. Moyer, D., Ver Steeg, G., Tax, C.M., Thompson, P.M.: Scanner invariant representations for diffusion MRI harmonization. Magn. Reson. Med. 84(4), 2174–2189 (2020)

    Article  Google Scholar 

  19. Pomponio, R.: Harmonization of large MRI datasets for the analysis of brain imaging patterns throughout the lifespan. Neuroimage 208, 116450 (2020)

    Article  Google Scholar 

  20. Solanes, A., et al.: Removing the effects of the site in brain imaging machine-learning-measurement and extendable benchmark. Neuroimage 265, 119800 (2023)

    Article  Google Scholar 

  21. Torbati, M.E., et al.: A multi-scanner neuroimaging data harmonization using ravel and combat. Neuroimage 245, 118703 (2021)

    Article  Google Scholar 

  22. Wang, F., et al.: Developmental topography of cortical thickness during infancy. Proc. Natl. Acad. Sci. 116(32), 15855–15860 (2019)

    Article  Google Scholar 

  23. Wang, L., Wu, Z., Chen, L., Sun, Y., Lin, W., Li, G.: iBEAT V2. 0: a multisite-applicable, deep learning-based pipeline for infant cerebral cortical surface reconstruction. Nat. Protoc. 18, 1488–1509 (2023)

    Google Scholar 

  24. Xia, K.: Genetic influences on longitudinal trajectories of cortical thickness and surface area during the first 2 years of life. Cereb. Cortex 32(2), 367–379 (2022)

    Article  MathSciNet  Google Scholar 

  25. Xia, Y., Shi, Y.: Personalized DMRI harmonization on cortical surface. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13436, pp. 717–725. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16446-0_68

    Chapter  Google Scholar 

  26. Yamashita, A., et al.: Harmonization of resting-state functional MRI data across multiple imaging sites via the separation of site differences into sampling bias and measurement bias. PLoS Biol. 17(4), e3000042 (2019)

    Article  Google Scholar 

  27. Zhao, F., et al.: Spherical deformable U-Net: application to cortical surface parcellation and development prediction. IEEE Trans. Med. Imaging 40(4), 1217–1228 (2021)

    Article  Google Scholar 

  28. Zhao, F., et al.: Harmonization of infant cortical thickness using surface-to-surface cycle-consistent adversarial networks. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11767, pp. 475–483. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_52

    Chapter  Google Scholar 

  29. Zhao, F.: Spherical U-Net on cortical surfaces: methods and applications. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 855–866. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_67

    Chapter  Google Scholar 

  30. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)

    Google Scholar 

  31. Zuo, L., et al.: Unsupervised MR harmonization by learning disentangled representations using information bottleneck theory. Neuroimage 243, 118569 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Institutes of Health (NIH) under Grants MH116225, MH117943, MH123202, AG075582, and NS128534.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, F. et al. (2023). Disentangling Site Effects with Cycle-Consistent Adversarial Autoencoder for Multi-site Cortical Data Harmonization. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14227. Springer, Cham. https://doi.org/10.1007/978-3-031-43993-3_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43993-3_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43992-6

  • Online ISBN: 978-3-031-43993-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics