Skip to main content

Cortical Analysis of Heterogeneous Clinical Brain MRI Scans for Large-Scale Neuroimaging Studies

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

Surface analysis of the cortex is ubiquitous in human neuroimaging with MRI, e.g., for cortical registration, parcellation, or thickness estimation. The convoluted cortical geometry requires isotropic scans (e.g., 1 mm MPRAGEs) and good gray-white matter contrast for 3D reconstruction. This precludes the analysis of most brain MRI scans acquired for clinical purposes. Analyzing such scans would enable neuroimaging studies with sample sizes that cannot be achieved with current research datasets, particularly for underrepresented populations and rare diseases. Here we present the first method for cortical reconstruction, registration, parcellation, and thickness estimation for clinical brain MRI scans of any resolution and pulse sequence. The methods has a learning component and a classical optimization module. The former uses domain randomization to train a CNN that predicts an implicit representation of the white matter and pial surfaces (a signed distance function) at 1 mm isotropic resolution, independently of the pulse sequence and resolution of the input. The latter uses geometry processing to place the surfaces while accurately satisfying topological and geometric constraints, thus enabling subsequent parcellation and thickness estimation with existing methods. We present results on 5 mm axial FLAIR scans from ADNI and on a highly heterogeneous clinical dataset with 5,000 scans. Code and data are publicly available at https://surfer.nmr.mgh.harvard.edu/fswiki/recon-all-clinical.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Billot, B., et al.: SynthSeg: segmentation of brain MRI scans of any contrast and resolution without retraining. Med. Image Anal. 86, 102789 (2023)

    Article  Google Scholar 

  2. Billot, B., Magdamo, C., Cheng, Y., Arnold, S.E., Das, S., Iglesias, J.E.: Robust machine learning segmentation for large-scale analysis of heterogeneous clinical brain MRI datasets. Proc. Natl. Acad. Sci. 120(9), e2216399120 (2023)

    Article  Google Scholar 

  3. Bongratz, F., Rickmann, A.M., Pölsterl, S., Wachinger, C.: Vox2Cortex: fast explicit reconstruction of cortical surfaces from 3D MRI scans with geometric deep neural networks. In: CVPR, pp. 20773–20783 (2022)

    Google Scholar 

  4. Cruz, R.S., Lebrat, L., Bourgeat, P., Fookes, C., Fripp, J., Salvado, O.: DeepCSR: a 3D deep learning approach for cortical surface reconstruction. In: WACV. pp, 806–815 (2021)

    Google Scholar 

  5. Dale, A.M., Fischl, B., Sereno, M.I.: Cortical surface-based analysis: I. segmentation and surface reconstruction. Neuroimage 9(2), 179–194 (1999)

    Article  Google Scholar 

  6. Desikan, R.S., et al.: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31(3), 968–980 (2006)

    Article  Google Scholar 

  7. Dickerson, B.C., Bakkour, A., Salat, D.H., Feczko, E., et al.: The cortical signature of Alzheimer’s disease: regionally specific cortical thinning relates to symptom severity in very mild to mild AD dementia and is detectable in asymptomatic amyloid-positive individuals. Cereb. Cortex 19(3), 497–510 (2009)

    Article  Google Scholar 

  8. Fischl, B., Liu, A., Dale, A.M.: Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex. IEEE Trans. Med. Imaging 20(1), 70–80 (2001)

    Article  Google Scholar 

  9. Fischl, B., Sereno, M., Dale, A.M.: Cortical surface-based analysis: II: inflation, flattening, and a surface-based coordinate system. Neuroimage 9(2), 195–207 (1999)

    Article  Google Scholar 

  10. Glasser, M., Sotiropoulos, S., Wilson, J.A., Coalson, T.S.: The minimal preprocessing pipelines for the human connectome project. Neuroimage 80, 105–24 (2013)

    Article  Google Scholar 

  11. Gopinath, K., Desrosiers, C., Lombaert, H.: SegRecon: learning joint brain surface reconstruction and segmentation from images. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12907, pp. 650–659. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87234-2_61

    Chapter  Google Scholar 

  12. Hibar, D., Westlye, L.T., Doan, N.T., Jahanshad, N., et al.: Cortical abnormalities in bipolar disorder: an MRI analysis of 6503 individuals from the ENIGMA bipolar disorder working group. Mol. Psychiatry 23(4), 932–942 (2018)

    Article  Google Scholar 

  13. Hoffmann, M., Billot, B., Greve, D.N., Iglesias, J.E., Fischl, B., Dalca, A.V.: SynthMorph: learning contrast-invariant registration without acquired images. IEEE Trans. Med. Imaging 41(3), 543–558 (2021)

    Article  Google Scholar 

  14. Hoopes, A., Iglesias, J.E., Fischl, B., Greve, D., Dalca, A.V.: TopoFit: rapid reconstruction of topologically-correct cortical surfaces. In: MIDL (2021)

    Google Scholar 

  15. Iglesias, J., Billot, B., Balbastre, Y., Tabari, A., et al.: Joint super-resolution and synthesis of 1 mm isotropic MP-RAGE volumes from clinical MRI exams with scans of different orientation, resolution & contrast. Neuroimage 237, 118206 (2021)

    Article  Google Scholar 

  16. Iscan, Z., Jin, T.B., Kendrick, A., Szeglin, B., Lu, H., Trivedi, M., et al.: Test-retest reliability of Freesurfer measurements within and between sites: Effects of visual approval process. Hum. Brain Mapp. 36(9), 3472–3485 (2015)

    Article  Google Scholar 

  17. Jack, C.R., Jr., Bernstein, M.A., Fox, N.C., Thompson, P., Alexander, G., et al.: The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. J. Magn. Reson. Imaging 27(4), 685–691 (2008)

    Article  Google Scholar 

  18. Ma, Q., Robinson, E.C., Kainz, B., Rueckert, D., Alansary, A.: PialNN: A fast deep learning framework for cortical pial surface reconstruction. In: International Workshop on Machine Learning in Clinical Neuroimaging. pp. 73–81 (2021)

    Google Scholar 

  19. Oren, O., Kebebew, E., Ioannidis, J.P.: Curbing unnecessary and wasted diagnostic imaging. JAMA 321(3), 245–246 (2019)

    Article  Google Scholar 

  20. Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: DeepSDF: learning continuous signed distance functions for shape representation. In: CVPR, pp. 165–174 (2019)

    Google Scholar 

  21. Pereira, J.B., Ibarretxe, N., Marti, M.J., Compta, Y., et al.: Assessment of cortical degeneration in patients with Parkinson’s disease by voxel-based morphometry, cortical folding, and cortical thickness. Hum. Brain Mapp. 33, 2521–34 (2012)

    Article  Google Scholar 

  22. Querbes, O., Aubry, F., Pariente, J., Lotterie, J.A., Démonet, J.F., et al.: Early diagnosis of Alzheimer’s disease using cortical thickness: impact of cognitive reserve. Brain 132(8), 2036–2047 (2009)

    Article  Google Scholar 

  23. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  24. Rosas, H., et al.: Regional and progressive thinning of the cortical ribbon in Huntington’s disease. Neurology 58(5), 695–701 (2002)

    Article  Google Scholar 

  25. Salat, D.H., et al.: Thinning of the cerebral cortex in aging. Cereb. Cortex 14(7), 721–730 (2004)

    Article  Google Scholar 

  26. Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W., Abbeel, P.: Domain randomization for transferring deep neural networks from simulation to the real world. In: IROS, pp. 23–30 (2017)

    Google Scholar 

Download references

Acknowledgment

This work is primarily funded by the National Institute of Aging (1R01AG070988). Further support is provided by, BRAIN Initiative (1RF1MH123195, 1UM1MH130981), National Institute of Biomedical Imaging and Bioengineering (1R01EB031114), Alzheimer’s Research UK (ARUK-IRG2019A-003), National Institute of Aging (P30AG062421)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karthik Gopinath .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gopinath, K., Greve, D.N., Das, S., Arnold, S., Magdamo, C., Iglesias, J.E. (2023). Cortical Analysis of Heterogeneous Clinical Brain MRI Scans for Large-Scale Neuroimaging Studies. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14227. Springer, Cham. https://doi.org/10.1007/978-3-031-43993-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43993-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43992-6

  • Online ISBN: 978-3-031-43993-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics