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Abstract. Surface analysis of the cortex is ubiquitous in human neu-
roimaging with MRI, e.g., for cortical registration, parcellation, or thick-
ness estimation. The convoluted cortical geometry requires isotropic scans
(e.g., 1mm MPRAGEs) and good gray-white matter contrast for 3D re-
construction. This precludes the analysis of most brain MRI scans ac-
quired for clinical purposes. Analyzing such scans would enable neu-
roimaging studies with sample sizes that cannot be achieved with cur-
rent research datasets, particularly for underrepresented populations and
rare diseases. Here we present the first method for cortical reconstruc-
tion, registration, parcellation, and thickness estimation for clinical brain
MRI scans of any resolution and pulse sequence. The methods has a
learning component and a classical optimization module. The former
uses domain randomization to train a CNN that predicts an implicit
representation of the white matter and pial surfaces (a signed distance
function) at 1mm isotropic resolution, independently of the pulse se-
quence and resolution of the input. The latter uses geometry process-
ing to place the surfaces while accurately satisfying topological and
geometric constraints, thus enabling subsequent parcellation and thick-
ness estimation with existing methods. We present results on 5mm ax-
ial FLAIR scans from ADNI and on a highly heterogeneous clinical
dataset with 5,000 scans. Code and data are publicly available at https:
//surfer.nmr.mgh.harvard.edu/fswiki/recon-all-clinical.

1 Introduction

Clinical MRI exams account for the overwhelming majority of brain MRI scans
acquired worldwide every year [18]. These exams comprise several scans acquired
during a session with different orientations (axial, coronal, sagittal), resolutions,
and MRI contrasts. The acquisition hardware and pulse sequence parameters
differ significantly across (and even within) centers, leading to highly heteroge-
neous data. Since cortical thickness is a robust biomarker in the study of normal
aging [24] and many brain disorders and diseases [21,20,23], methods that can
extract parcellations and thickness measurements from clinical scans (while reg-
istering to a reference spherical coordinate frame) are highly desirable. However,
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cortical analysis of clinical scans is complex due to large slice spacing (result-
ing in incomplete cortex geometry description) and heterogeneous acquisitions
(hindering supervised approaches leveraging image intensity distributions).

Existing neuroimaging research studies [11] rely on isotropic scans with good
gray-white matter contrast (typically a 1mm MPRAGE) and utilize prior infor-
mation on tissue intensities. Classical cortical analysis pipelines like FreeSurfer [4,8]
generate two triangle meshes per hemisphere, one for the white matter (WM) sur-
face and one for the pial surface, while preventing self-intersections. The spherical
topology of the surfaces enables mapping coordinates to a sphere, thus enabling
computation of vertex-wise statistics across subjects in a common space.

Over the last two years, machine learning approaches for cortical reconstruc-
tion on 1mm MPRAGEs have emerged. Methods based on signed distance func-
tions (SDF) like DeepCSR [3] or SegRecon [10] predict voxel-wise SDFs for the
WM and pial surfaces. The final meshes are computed as the SDF isosurfaces and
do not guarantee topological correctness. PialNN [17] uses an explicit represen-
tation to project the pial surface from the WM surface, which is assumed to be
topologically correct. Approaches based on surface deformation like TopoFit [13]
or Vox2Cortex [2] use image and graph convolutions to predict a deformation
that maps a topologically correct template mesh to an input MRI, thus gen-
erating WM and pial surfaces. However, these approaches neither prevent self
intersections nor guarantee topological correctness.

Contribution: Our proposed method allows cortical analysis of brain MRI scans
of any orientation, resolution, and MRI contrast without retraining, making it
possible to use it out of the box for straightforward analysis of large datasets
“in the wild”. The proposed method combines two modules: a convolutional
neural network (CNN) that estimates SDFs of the WM and pial surfaces, and
a classical geometry processing module that places the surfaces while satisfy-
ing geometric constraints (no self-intersections, spherical topology, regularity).
The CNN capitalizes on recent advances in domain randomization to provide
robustness against changes in acquisition – in contrast with existing learning
approaches that can only process images acquired with the same resolution and
MRI contrast as the scans they were trained on. Finally, our method’s classical
geometry processing gives us geometric guarantees and grants instant access to
an array of existing methods for cortical thickness estimation, registration, and
parcellation [8].

Further related work: The parameterization of surfaces as SDFs has been
combined with deep neural networks in several domains [19], including cortical
reconstruction [3]. Our robustness to MRI contrast and resolution changes is
achieved using ideas from the domain randomization literature [25], which in-
volves training supervised CNNs with synthetic images generated from segmen-
tations on the fly at every iteration. These techniques have been successfully
applied to MRI analysis [1,12] and use random sampling of simulation param-
eters such as orientation, contrast, and resolution from uniform distributions
at every mini-batch, which results in unrealistic appearance, making the CNN
agnostic to these features.
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Fig. 1. Overview of our proposed approach for cortical analysis of clinical brain MRI
scans of any resolution and MRI contrast, without retraining. The images shown in
(c-e) correspond to a real axial FLAIR scan with 5mm slice spacing and 5mm thickness.

2 Methods

Our proposed method (Figure 1) has two distinct components: a learning module
to estimate isotropic SDFs from anisotropic scans and a geometry processing
module to place the WM and pial surfaces with topological constraints.

2.1 Learning of SDFs

This module estimates isotropic SDFs of the WM and pial surfaces of both hemi-
spheres in a contrast- and resolution-independent fashion. It utilizes a domain
randomization approach based on training a voxel-wise SDF regression CNN
with synthetic data, which comprises volumetric segmentations and correspond-
ing surfaces (real images are not used). Such training data can be obtained “for
free” by running FreeSurfer on isotropic T1 scans (we used the HCP dataset [9]).

Given a 3D segmentation and four surface meshes (WM and pial surfaces for
each hemisphere; see Figure 1a), we compute the following input/target pairs at
every training iteration. As input, we simulate a synthetic MRI scan of random
orientation, resolution, and contrast from the 3D segmentation. For this purpose,
we use a Gaussian mixture model conditioned on the (spatially augmented)
labels, combined with models of bias field, resolution, and noise similar to [1].
We use random sampling to determine the orientation (coronal, axial, sagittal, or
isotropic), slice spacing (between 1 and 9mm), and slice thickness (between 1mm
and the slice spacing). The thickness is simulated with a Gaussian kernel across
slices. The final synthetic image is upscaled to 1mm isotropic resolution, such
that the CNN operates on input-output pairs of the same size and resolution.

As regression targets, we use voxel-wise SDFs computed from the WM and
pial meshes for both hemispheres. The computation of the SDFs would greatly



slow down CNN training if performed on the fly. Instead, we precompute them
before training and deform them nonlinearly (along with the 3D segmentation)
for geometric augmentation during training. While this is only an approximation
to the real SDF, it respects the zero-level-set that implicitly defines the surface,
and we found it to work well in practice. An example of a synthetic scan and
target SDFs used to train the CNN are shown in Figure 1b.

The regression CNN is trained by feeding the synthetic images to the network
and optimizing the weights to minimize the L1 norm of the difference between
the ground truth and predicted distance maps. In practice, we clip the SDFs at
an absolute value of 5mm to prevent the CNN from wasting capacity trying to
model relatively small variations far away from the surfaces of interest. At test
time, the input scan is upscaled to the isotropic resolution of the training data
and pushed through the CNN to obtain the predicted SDFs.

2.2 Geometry processing for surface placement

To process real clinical scans, we first feed them to the trained CNN to predict the
SDFs for the pial and WM surfaces for both hemispheres (Figure 1c). To avoid
generating topologically incorrect surfaces from these SDFs, we capitalize on the
extensive literature on the geometry processing of cortical meshes with classical
techniques. For reconstructing WM surfaces, we run SynthSeg [1] on the input
scan to obtain two binary masks corresponding to the left and right WM labels.
From this point on, processing happens independently for each hemisphere. First,
we fill in the holes in the hemisphere’s mask and tessellate it to obtain the initial
WM mesh. Then, we smooth the mesh and use automated manifold surgery [7]
to guarantee spherical topology. Next, we iteratively deform the WM mesh by
minimizing an objective function consisting of a fidelity term and a regularizer.

Specifically: letM = (X,K) denote a triangle mesh, where X = [x1, . . . ,xV ]
represents the coordinates of its V vertices (xv ∈ R3), and K represents the
connectivity. Let Dw(r) be the SDF for the WM surface estimated by our CNN,
where r is the spatial location. The objective function (“energy”) is the following:

E[X;Dw(r),K] =

V∑
v=1

[tanhDw(xv)]2 + λ1

V∑
v=1

∑
u∈Nv

[nt
v(xv − xu)]2

+λ2

V∑
v=1

∑
u∈Nv

{
[et1v(xv − xu)]2 + [et2v(xv − xu)]2

}
. (1)

The first term in Equation 1 is the fidelity term, which encourages the SDF to be
zero on the mesh vertices; we squash the SDF through a tanh function to prevent
huge gradients far away from zero. The second and third terms are regularizers
that endow the mesh with a spring-like behavior [4]: nv is the surface normal
at vertex v; e1v and e2v define an orthonormal basis for the tangent plane at
vertex v; Nv is the neighborhood of v according to K; and λ1 and λ2 are relative
weights, which we define according to [4] (λ1 = 0.0006, λ2 = 0.0002). Optimiza-



tion is performed with gradient descent. At every iteration, self-intersections are
monitored and eliminated by reducing the step size as needed [4].

The pial surface is fitted with a very similar procedure, but using the pre-
dicted SDF of the pial surface. Figure 1d shows examples of reconstructed sur-
faces for the axial FLAIR scan from Figure 1c. Given the fitted WM and pial
surfaces, we use FreeSurfer to compute cortical thickness, parcellation, and reg-
istration to a common coordinate frame in spherical coordinates (Figure 1e).

2.3 Implementation details

Our voxel-wise regression CNN is a 3D U-net [22] trained with synthetic pairs
generated on the fly as explained in Section 2.1 above. The U-net has 5 levels
with 2 layers each, uses 3×3×3 convolutions and exponential linear activations.
The layers have 24l features, where l is the level number. The last layer uses linear
activation functions to model the SDFs. The CNN weights were optimized with
stochastic gradient descent using a fixed step size of 0.0001 and 300,000 iterations
(enough to converge). At test time, the run time is dominated by the geometry
processing (2-3 hours, depending on the complexity of the manifold surgery).

3 Experiments and Results

3.1 Datasets

- HCP: we used 150 randomly selected subjects (71 males, ages: 29.9±3.4 years)
from HCP [9] to train the U-net. We ran FreeSurfer to obtain the segmentations
and SDFs (images are discarded as they are not used in training).
- ADNI: in our first experiment, we used 1mm MPRAGE and correspond-
ing 5mm axial FLAIR scans of 200 randomly selected subjects from the ADNI
dataset [16] (95 males, ages 74.5±7.4 years). This setup enables us to directly
compare the results from research- and clinical-grade scans.
- Clinical: this dataset comprises 9,735 scans from 1,367 MRI sessions of dis-
tinct subjects with memory complaints (749 males, ages 18-90) from HOSPITAL.
Surfaces were successfully generated for 5,064 scans; the rest failed due to in-
sufficient field of view. This dataset includes a wide range of MR contrasts and
resolutions. We note that this dataset also includes 581 1mm MPRAGE scans.

The availability of 1mm MPRAGEs for some of the subjects enables us to
process them with FreeSurfer and use the result as ground truth [15] (Figure 2a).

3.2 Competing methods

To the best of our knowledge, the only existing competing method for our pro-
posed algorithm is SynthSR [14], which utilizes a synthetic data generator like
ours to turn scans of any resolution and contrast into synthetic 1mm MPRAGES
– which can be subsequently processed with FreeSurfer to obtain surfaces (Fig-
ure 2b). Compared with our proposed approach (Figure 2c), this pipeline inherits



(c) Proposed(b) SynthSR(a) 1mm MPRAGE (d) TopoFit on SDFs

Fig. 2. Qualitative comparison on a 5mm axial FLAIR scan from ADNI. (a) Ground
truth T1 with WM (red) and pial (yellow) surfaces estimated by FreeSurfer (top); and
3D reconstruction of the left WM surface (bottom); (b) Synthetic T1 produced by
SynthSR with FreeSurfer surfaces. (c) Our proposed method. (d) Examples of WM
surfaces produced by TopoFit, trained to predict on the output of our SDF predictor,
show small blobs in different areas (e.g., indicated by yellow arrows)

the smoothness of the synthetic MPRAGE, leading to smoother surfaces that
may miss larger folds. We also tried training TopoFit[13] on the synthetic images
and predicted SDFs, but failed to produce neural networks with good general-
ization ability, as they led to small blobs on the surfaces at test time (Figure 2d).

3.3 Results on the ADNI dataset

Figure 3 summarizes the results on the ADNI dataset. While previous machine
learning approaches focus evaluation on distance errors, these can be difficult
to interpret. Instead, we evaluate our method using the performance on the
downstream tasks that one is ultimately interested in. First, we computed the
accuracy of the Desikan-Killiany parcellation [5] produced by SynthSR and our
proposed method. Figure 3a shows the results on the inflated surface of the
fsaverage template. Since the parcellation is computed from the curvature of the
WM surface, it is a relatively easy problem. The overlap between the ground
truth parcellation and the two competing methods is very high. Dice scores over
0.90 are obtained for almost every region in both methods, and the average
across regions is almost identical for both methods (0.95).

We then used the obtained parcellations to study the effect of Alzheimer’s
disease (AD) on cortical thickness, using a group study between AD subjects
and elderly controls. For this purpose, we first fit a general linear model (GLM)
to the cortical thickness at every parcel, using age, gender, and AD status as
covariates. We then used the model coefficients to correct the thickness estimates
for age and gender, and compared the thicknesses of the two groups.

Figure 3b shows the effect sizes (ES) for the reference 1mm MPRAGEs and
the competing methods. The 1mm scans yield the expected AD cortical thinning
pattern [6], with strong atrophy in the temporal lobe (ES>1.0) and, to a lesser
extent, in parietal and middle frontal areas (ES∼1.0). The average ES across all
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Fig. 3. Summary of results on the ADNI dataset, displayed on the inflated surface
of FreeSurfer’s average subject (fsaverage). (a) Accuracy of parcellation for SynthSR
and our proposed method using Dice scores. (b) Ability to discriminate AD vs controls,
measured with effect sizes. (c) Effect of aging, measured as the strength of the (negative)
correlation between age and thickness. The strength of the correlation is represented
by p-values of a Student’s t test assessing whether the correlation significantly differs
from zero; note that we log-transform the p-values for easier visualization.

regions is 0.64. As expected, the thickness estimates based on the FLAIR scans
are less able to detect the differences between the two groups. SynthSR loses, on
average, half of the ES (0.32 vs 0.64). Most worrying, it cannot detect the effect
on the temporal areas (particularly middle temporal). Our method can detect
these differences with ES>0.6 in all temporal regions. On average, our method
recovers one third of the ES lost by SynthSR (0.42 vs 0.32).

Finally, we studied the effect of aging on cortical thickness using the same
GLM as above. Figure 3c shows maps of p-values computed with Student’s t dis-
tribution, where we have transformed p∗ = log10(p) for easier visualization. Once
more, the 1mm MPRAGEs display the expected pattern [24], with strongest at-
rophy in superior-temporal and, to less extent, the central and medial frontal
gyri. SynthSR fails to detect the superior-temporal effect in the left hemisphere
and barely discerns it in the right hemisphere. Our approach, on the other hand,
successfully detects these effects. We also note that SynthSR and our method
display false positives in frontal areas of the right hemisphere; further analysis
(possibly with manual quality control) will be needed to elucidate this result.

3.4 Results on the clinical dataset

The clinical dataset, despite not being clustered into well defined groups as
ADNI, enables us to evaluate our method with the type of data that it is con-
ceived for: a heterogeneous set of brain MRI scans acquired “in the wild”. Sam-
ples of such scans and outputs produced by our method are shown in Figure 4.
In this experiment, we first used the 581 1mm MPRAGEs to compute the Dice
scores of the Desikan-Killiany parcellation on clinical acquisitions. The results



(a)

(b)

Fig. 4. Sample outputs for heterogeneous scans from the clinical dataset: (a) Sagittal
TSE-T1 scan (.4×.4×6mm). (b) Axial FLAIR (1.7×1.7×6mm). The WM and pial
surfaces are shown on the right. The cortical parcellation is overlaid on the WM surface.
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Fig. 5. Results on clinical dataset. (a) Dice scores for parcellation, using FreeSurfer
on MPRAGEs as ground truth. (b-c) Thinning of superior frontal cortex in aging, as
measured with our method on anisotropic scans (b) and FreeSurfer on MPRAGEs (c).

are displayed in Figure 5a, and show that our proposed method is able to sustain
high accuracy in this task (the mean Dice is the same as for ADNI), despite the
huge variability in the acquisition protocol of the input scans. As in the previous
experiment, we also computed aging curves using all non-1mm-MPRAGE scans
(4,483 in total), while correcting for gender and slice spacing. The fitted curve
for a representative region (the superior frontal area, which shows consistent
effects in Figure 3c) is shown in Figure 5b. While the thinning trend exists, the
data are rather noisy and the linear fit (ρ=-0.24) underestimates the effect of
aging, i.e., the magnitude of the slope. This is apparent when comparing with
the fit produced by the 581 MPRAGEs (Figure 5c, ρ=-0.55).

3.5 Discussion and conclusion

We have presented a novel method for cortical analysis of clinical brain scans of
any MRI contrast and resolution that does not require retraining. To the best
of our knowledge, this is the first method seeking to solve this difficult problem.
The method runs in 2-3 hours but could be sped up by replacing some modules
(e.g., the spherical registration) with faster learning methods.

Our method provides accurate parcellation across the board, which is helpful
in applications like diffusion MRI (e.g., for seeding or constraining tractography



with surfaces and parcellations when a T1 scan is unavailable or is difficult to
register due to geometric distortion of the diffusion-weighted images). However,
we observed increased variability in cortical thickness when processing the highly
heterogeneous clinical dataset. Future work will focus on improving the reliability
of thickness measurements in such scenarios and assessing if modeling geometric
covariates (e.g., vertex-wise distance to the nearest slice or angle between surface
and acquisition orientation) may help reduce such variability.

Our method and the clinical dataset are publicly available, which enables
researchers worldwide to capitalize on millions of retrospective clinical scans to
perform cortical analysis currently unattainable in research studies, particularly
for rare diseases and underrepresented populations.
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