Skip to main content

Regressing Simulation to Real: Unsupervised Domain Adaptation for Automated Quality Assessment in Transoesophageal Echocardiography

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

Automated quality assessment (AQA) in transoesophageal echocardiography (TEE) contributes to accurate diagnosis and echocardiographers’ training, providing direct feedback for the development of dexterous skills. However, prior works only perform AQA on simulated TEE data due to the scarcity of real data, which lacks applicability in the real world. Considering the cost and limitations of collecting TEE data from real cases, exploiting the readily available simulated data for AQA in real-world TEE is desired. In this paper, we construct the first simulation-to-real TEE dataset, and propose a novel Simulation-to-Real network (SR-AQA) with unsupervised domain adaptation for this problem. It is based on uncertainty-aware feature stylization (UFS), incorporating style consistency learning (SCL) and task-specific learning (TL), to achieve high generalizability. Concretely, UFS estimates the uncertainty of feature statistics in the real domain and diversifies simulated images with style variants extracted from the real images, alleviating the domain gap. We enforce SCL and TL across different real-stylized variants to learn domain-invariant and task-specific representations. Experimental results demonstrate that our SR-AQA outperforms state-of-the-art methods with 3.02% and 4.37% performance gain in two AQA regression tasks, by using only 10% unlabelled real data. Our code and dataset are available at https://doi.org/10.5522/04/23699736.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Re-parameterization trick is applied here to make the sampling operation differentiable.

  2. 2.

    Example GI and CP results are provided in the supplementary material

References

  1. Abdi, A.H., et al.: Automatic quality assessment of echocardiograms using convolutional neural networks: feasibility on the apical four-chamber view. IEEE Trans. Med. Imaging 36(6), 1221–1230 (2017)

    Article  Google Scholar 

  2. Chen, C., Li, Z., Ouyang, C., Sinclair, M., Bai, W., Rueckert, D.: MaxStyle: adversarial style composition for robust medical image segmentation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13435, pp. 151–161. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16443-9_15

    Chapter  Google Scholar 

  3. Chen, X., He, K.: Exploring simple Siamese representation learning. In: CVPR 2021, pp. 15745–15753 (2021)

    Google Scholar 

  4. Chen, X., Wang, S., Wang, J., Long, M.: Representation subspace distance for domain adaptation regression. In: ICML 2021, pp. 1749–1759 (2021)

    Google Scholar 

  5. Hahn, R.T., et al.: Guidelines for performing a comprehensive transesophageal echocardiographic examination: recommendations from the American society of echocardiography and the society of cardiovascular anesthesiologists. J. Am. Soc. Echocardiogr. 26(9), 921–964 (2013)

    Article  Google Scholar 

  6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR 2016, pp. 770–778 (2016)

    Google Scholar 

  7. Hempel, C., et al.: Impact of simulator-based training on acquisition of transthoracic echocardiography skills in medical students. Ann. Card. Anaesth. 23(3), 293 (2020)

    Article  Google Scholar 

  8. Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance normalization. In: ICCV 2017, pp. 1501–1510 (2017)

    Google Scholar 

  9. Labs, R.B., Vrettos, A., Loo, J., Zolgharni, M.: Automated assessment of transthoracic echocardiogram image quality using deep neural networks. Intell. Med. (2022)

    Google Scholar 

  10. Le, C.K., Lewis, J., Steinmetz, P., Dyachenko, A., Oleskevich, S.: The use of ultrasound simulators to strengthen scanning skills in medical students: a randomized controlled trial. J. Ultrasound Med. 38(5), 1249–1257 (2019)

    Article  Google Scholar 

  11. Lee, S., Seong, H., Lee, S., Kim, E.: WildNet: learning domain generalized semantic segmentation from the wild. In: CVPR 2022, pp. 9926–9936 (2022)

    Google Scholar 

  12. Li, X., Dai, Y., Ge, Y., Liu, J., Shan, Y., Duan, L.: Uncertainty modeling for out-of-distribution generalization. In: ICLR 2022 (2022)

    Google Scholar 

  13. Liao, Z., et al.: On modelling label uncertainty in deep neural networks: automatic estimation of intra-observer variability in 2D echocardiography quality assessment. IEEE Trans. Med. Imaging 39(6), 1868–1883 (2019)

    Article  Google Scholar 

  14. Lin, Z., et al.: Multi-task learning for quality assessment of fetal head ultrasound images. Med. Image Anal. 58, 101548 (2019)

    Google Scholar 

  15. Mazomenos, E.B., Bansal, K., Martin, B., Smith, A., Wright, S., Stoyanov, D.: Automated performance assessment in transoesophageal echocardiography with convolutional neural networks. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 256–264. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_30

    Chapter  Google Scholar 

  16. Mazomenos, E.B., et al.: Motion-based technical skills assessment in transoesophageal echocardiography. In: Zheng, G., Liao, H., Jannin, P., Cattin, P., Lee, S.-L. (eds.) MIAR 2016. LNCS, vol. 9805, pp. 96–103. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-43775-0_9

    Chapter  Google Scholar 

  17. Montealegre-Gallegos, M., et al.: Imaging skills for transthoracic echocardiography in cardiology fellows: the value of motion metrics. Ann. Card. Anaesth. 19(2), 245 (2016)

    Article  Google Scholar 

  18. Rangwani, H., Aithal, S.K., Mishra, M., Jain, A., Radhakrishnan, V.B.: A closer look at smoothness in domain adversarial training. In: ICML 2022, pp. 18378–18399 (2022)

    Google Scholar 

  19. Shen, Y., Lu, Y., Jia, X., Bai, F., Meng, M.Q.H.: Task-relevant feature replenishment for cross-centre polyp segmentation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13434, pp. 599–608. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16440-8_57

    Chapter  Google Scholar 

  20. Song, H., Peng, Y.G., Liu, J.: Innovative transesophageal echocardiography training and competency assessment for Chinese anesthesiologists: role of transesophageal echocardiography simulation training. Curr. Opin. Anaesthesiol. 25(6), 686–691 (2012)

    Article  Google Scholar 

  21. Wang, X., Long, M., Wang, J., Jordan, M.: Transferable calibration with lower bias and variance in domain adaptation. In: NeurIPS 2020, pp. 19212–19223 (2020)

    Google Scholar 

  22. Wheeler, R., et al.: A minimum dataset for a standard transoesphageal echocardiogram: a guideline protocol from the British society of echocardiography. Echo Res. Pract. 2(4), G29 (2015)

    Article  Google Scholar 

  23. Zhang, Y., Liu, T., Long, M., Jordan, M.: Bridging theory and algorithm for domain adaptation. In: ICML 2019, pp. 7404–7413 (2019)

    Google Scholar 

  24. Zhou, K., Yang, Y., Qiao, Y., Xiang, T.: Domain generalization with mixstyle. In: ICLR 2021 (2021)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS) [203145Z/16/Z and NS/A000050/1]; EPSRC-funded UCL Centre for Doctoral Training in Intelligent, Integrated Imaging in Healthcare (i4health) [EP/S021930/1]; Horizon 2020 FET [863146]; a UCL Graduate Research Scholarship; and Singapore MoE Tier 1 Start up grant (WBS: A-8001267-00-00). Danail Stoyanov is supported by a RAE Chair in Emerging Technologies [CiET1819/2/36] and an EPSRC Early Career Research Fellowship [EP/P012841/1].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jialang Xu or Evangelos B. Mazomenos .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2211 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, J. et al. (2023). Regressing Simulation to Real: Unsupervised Domain Adaptation for Automated Quality Assessment in Transoesophageal Echocardiography. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14228. Springer, Cham. https://doi.org/10.1007/978-3-031-43996-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43996-4_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43995-7

  • Online ISBN: 978-3-031-43996-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics