Abstract
In surgical oncology, it is challenging for surgeons to identify lymph nodes and completely resect cancer even with pre-operative imaging systems like PET and CT, because of the lack of reliable intraoperative visualization tools. Endoscopic radio-guided cancer detection and resection has recently been evaluated whereby a novel tethered laparoscopic gamma detector is used to localize a preoperatively injected radiotracer. This can both enhance the endoscopic imaging and complement preoperative nuclear imaging data. However, gamma activity visualization is challenging to present to the operator because the probe is non-imaging and it does not visibly indicate the activity origination on the tissue surface. Initial failed attempts used segmentation or geometric methods, but led to the discovery that it could be resolved by leveraging high-dimensional image features and probe position information. To demonstrate the effectiveness of this solution, we designed and implemented a simple regression network that successfully addressed the problem. To further validate the proposed solution, we acquired and publicly released two datasets captured using a custom-designed, portable stereo laparoscope system. Through intensive experimentation, we demonstrated that our method can successfully and effectively detect the sensing area, establishing a new performance benchmark. Code and data are available at https://github.com/br0202/Sensing_area_detection.git.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Allan, M., et al.: Stereo correspondence and reconstruction of endoscopic data challenge. arXiv:2101.01133 (2021)
Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)
Huang, B., et al.: Simultaneous depth estimation and surgical tool segmentation in laparoscopic images. IEEE Trans. Med. Robot. Bionics 4(2), 335–338 (2022)
Huang, B., et al.: Tracking and visualization of the sensing area for a tethered laparoscopic gamma probe. Int. J. Comput. Assist. Radiol. Surg. 15(8), 1389–1397 (2020). https://doi.org/10.1007/s11548-020-02205-z
Huang, B., et al.: Self-supervised generative adversarial network for depth estimation in laparoscopic images. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12904, pp. 227–237. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87202-1_22
Huang, B., et al.: Self-supervised depth estimation in laparoscopic image using 3d geometric consistency. In: Medical Image Computing and Computer Assisted Intervention (2022)
Jo, K., Choi, Y., Choi, J., Chung, J.W.: Robust real-time detection of laparoscopic instruments in robot surgery using convolutional neural networks with motion vector prediction. Appl. Sci. 9(14), 2865 (2019)
Koch, G., Zemel, R., Salakhutdinov, R., et al.: Siamese neural networks for one-shot image recognition. In: ICML Deep Learning Workshop, vol. 2. Lille (2015)
Lin, A., Chen, B., Xu, J., Zhang, Z., Lu, G., Zhang, D.: DS-TransUNet: dual Swin transformer u-net for medical image segmentation. IEEE Trans. Instrum. Meas. 71, 1–15 (2022)
Liu, F., Jonmohamadi, Y., Maicas, G., Pandey, A.K., Carneiro, G.: Self-supervised depth estimation to regularise semantic segmentation in knee arthroscopy. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 594–603. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_58
Liu, X., Li, Z., Ishii, M., Hager, G.D., Taylor, R.H., Unberath, M.: Sage: slam with appearance and geometry prior for endoscopy. In: 2022 International Conference on Robotics and Automation (ICRA), pp. 5587–5593. IEEE (2022)
Liu, X., et al.: Dense depth estimation in monocular endoscopy with self-supervised learning methods. IEEE Trans. Med. Imaging 39(5), 1438–1447 (2019)
Maćkiewicz, A., Ratajczak, W.: Principal components analysis (PCA). Comput. Geosci. 19(3), 303–342 (1993)
Marullo, G., Tanzi, L., Ulrich, L., Porpiglia, F., Vezzetti, E.: A multi-task convolutional neural network for semantic segmentation and event detection in laparoscopic surgery. J. Personalized Med. 13(3), 413 (2023)
Paszke, A., et al.: Automatic differentiation in pytorch (2017)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Tao, R., Huang, B., Zou, X., Zheng, G.: SVT-SDE: spatiotemporal vision transformers-based self-supervised depth estimation in stereoscopic surgical videos. IEEE Trans. Med. Robot. Bionics 5, 42–53 (2023)
Tukra, S., Giannarou, S.: Stereo depth estimation via self-supervised contrastive representation learning. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13437, pp. 604–614. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16449-1_58
Xu, C., Huang, B., Elson, D.S.: Self-supervised monocular depth estimation with 3-D displacement module for laparoscopic images. IEEE Trans. Med. Robot. Bionics 4(2), 331–334 (2022)
Ye, M., Johns, E., Handa, A., Zhang, L., Pratt, P., Yang, G.Z.: Self-supervised siamese learning on stereo image pairs for depth estimation in robotic surgery. arXiv preprint arXiv:1705.08260 (2017)
Yoon, J., et al.: Surgical scene segmentation using semantic image synthesis with a virtual surgery environment. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13437, pp. 551–561. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16449-1_53
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Huang, B., Hu, Y., Nguyen, A., Giannarou, S., Elson, D.S. (2023). Detecting the Sensing Area of a Laparoscopic Probe in Minimally Invasive Cancer Surgery. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14228. Springer, Cham. https://doi.org/10.1007/978-3-031-43996-4_25
Download citation
DOI: https://doi.org/10.1007/978-3-031-43996-4_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-43995-7
Online ISBN: 978-3-031-43996-4
eBook Packages: Computer ScienceComputer Science (R0)