Skip to main content

A Closed-Form Solution to Electromagnetic Sensor Based Intraoperative Limb Length Measurement in Total Hip Arthroplasty

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

Total hip arthroplasty (THA) is an orthopaedic surgery to replace the diseased femoral head and socket of the hip joint with artificial implants. Achieving appropriate leg length and offset in THA is critical to avoid instability, leg length discrepancies, persistent pain, or early implant failure. This paper provides an electromagnetic (EM) sensor based approach for accurately measuring the change in leg length and offset intraoperatively. The proposed approach does not require direct line-of-sight, avoids the need for accurately returning the leg back to the neutral reference position, and has an efficient closed-form solution from least squares optimisation. Validations using simulations, phantom experiments, and cadaver tests demonstrate that the proposed method can provide more accurate results than the conventional method by manual gauge, the standard optical tracking based approach, and the direct use of one EM reading, thus showing significant potential clinical value.

Supported by PMSW Research Pty Ltd., Australia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bose, W.J.: Accurate limb-length equalization during total hip arthroplasty. Orthopedics 23(5), 433 (2000)

    Google Scholar 

  2. Cross, M., et al.: The global burden of hip and knee osteoarthritis: estimates from the global burden of disease 2010 study. Ann. Rheum. Dis. 73(7), 1323–1330 (2014)

    Article  Google Scholar 

  3. Desai, A.S., Dramis, A., Board, T.N.: Leg length discrepancy after total hip arthroplasty: a review of literature. Curr. Rev. Musculoskelet. Med. 6(4), 336–341 (2013). https://doi.org/10.1007/s12178-013-9180-0

    Article  Google Scholar 

  4. Fontalis, A., Kayani, B., Thompson, J.W., Plastow, R., Haddad, F.S.: Robotic total hip arthroplasty: past, present and future. Orthop. Trauma 36(1), 6–13 (2022)

    Article  Google Scholar 

  5. Franz, A.M., Haidegger, T., Birkfellner, W., Cleary, K., Peters, T.M., Maier-Hein, L.: Electromagnetic tracking in medicine-a review of technology, validation, and applications. IEEE Trans. Med. Imaging 33(8), 1702–1725 (2014)

    Article  Google Scholar 

  6. Gheewala, R.A., Young, J.R., Villacres Mori, B., Lakra, A., DiCaprio, M.R.: Perioperative management of leg-length discrepancy in total hip arthroplasty: a review. Arch. Orthop. Trauma Surg. 143, 5417–5423 (2023). https://doi.org/10.1007/s00402-022-04759-w

    Article  Google Scholar 

  7. Gomes-Fonseca, J., et al.: Assessment of electromagnetic tracking systems in a surgical environment using ultrasonography and ureteroscopy instruments for percutaneous renal access. Med. Phys. 47(1), 19–26 (2020)

    Article  Google Scholar 

  8. Hagan, M.J., et al.: Navigation techniques in endoscopic spine surgery. BioMed Res. Int. 2022, 8419739 (2022)

    Google Scholar 

  9. Kawamura, H., Watanabe, Y., Nishino, T., Mishima, H.: Effects of lower limb and pelvic pin positions on leg length and offset measurement errors in experimental total hip arthroplasty. J. Orthop. Surg. Res. 16(1), 1–9 (2021). https://doi.org/10.1186/s13018-021-02347-z

    Article  Google Scholar 

  10. Lecoanet, P., Vargas, M., Pallaro, J., Thelen, T., Ribes, C., Fabre, T.: Leg length discrepancy after total hip arthroplasty: can leg length be satisfactorily controlled via anterior approach without a traction table? Evaluation in 56 patients with EOS 3D. Orthop. Traumatol. Surg. Res. 104(8), 1143–1148 (2018)

    Article  Google Scholar 

  11. McGee, H., Scott, J.: A simple method of obtaining equal leg length in total hip arthroplasty. Clin. Orthop. Relat. Res. 194, 269–270 (1985)

    Article  Google Scholar 

  12. Mohammadbagherpoor, H., et al.: An implantable wireless inductive sensor system designed to monitor prosthesis motion in total joint replacement surgery. IEEE Trans. Biomed. Eng. 67(6), 1718–1726 (2019)

    Article  Google Scholar 

  13. Paprosky, W.G., Muir, J.M.: Intellijoint HIP®: a 3D mini-optical navigation tool for improving intraoperative accuracy during total hip arthroplasty. Med. Dev. Evid. Res. 9, 401–408 (2016)

    Article  Google Scholar 

  14. Quitmann, H.: Supercapsular percutaneously assisted (SuperPath) approach in total hip arthroplasty. Oper. Orthop. Traumatol. 31(6), 536–546 (2019)

    Article  Google Scholar 

  15. Renkawitz, T., Schuster, T., Grifka, J., Kalteis, T., Sendtner, E.: Leg length and offset measures with a pinless femoral reference array during THA. Clin. Orthop. Relat. Res.® 468(7), 1862–1868 (2010). https://doi.org/10.1007/s11999-009-1086-1

    Article  Google Scholar 

  16. Sarin, V.K., Pratt, W.R., Bradley, G.W.: Accurate femur repositioning is critical during intraoperative total hip arthroplasty length and offset assessment. J. Arthroplasty 20(7), 887–891 (2005)

    Article  Google Scholar 

  17. Shiramizu, K., Naito, M., Shitama, T., Nakamura, Y., Shitama, H.: L-shaped caliper for limb length measurement during total hip arthroplasty. J. Bone Joint Surg. Br. Vol. 86(7), 966–969 (2004)

    Article  Google Scholar 

  18. Sorriento, A., et al.: Optical and electromagnetic tracking systems for biomedical applications: a critical review on potentialities and limitations. IEEE Rev. Biomed. Eng. 13, 212–232 (2019)

    Article  Google Scholar 

  19. Takamatsu, T., et al.: Radiographic determination of hip rotation center and femoral offset in Japanese adults: a preliminary investigation toward the preoperative implications in total hip arthroplasty. BioMed Res. Int. 2015, 610763 (2015)

    Google Scholar 

  20. Tarwala, R., Dorr, L.D.: Robotic assisted total hip arthroplasty using the MAKO platform. Curr. Rev. Musculoskelet. Med. 4, 151–156 (2011). https://doi.org/10.1007/s12178-011-9086-7

    Article  Google Scholar 

  21. Yaniv, Z.: Which pivot calibration? In: Medical Imaging 2015: Image-Guided Procedures, Robotic Interventions, and Modeling, vol. 9415, pp. 542–550. SPIE (2015)

    Google Scholar 

  22. Zahar, A., Rastogi, A., Kendoff, D.: Dislocation after total hip arthroplasty. Curr. Rev. Musculoskelet. Med. 6(4), 350–356 (2013). https://doi.org/10.1007/s12178-013-9187-6

    Article  Google Scholar 

  23. Zhao, L., Giannarou, S., Lee, S.L., Yang, G.Z.: SCEM+: real-time robust simultaneous catheter and environment modeling for endovascular navigation. IEEE Robot. Autom. Lett. 1(2), 961–968 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiancheng Li .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, T. et al. (2023). A Closed-Form Solution to Electromagnetic Sensor Based Intraoperative Limb Length Measurement in Total Hip Arthroplasty. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14228. Springer, Cham. https://doi.org/10.1007/978-3-031-43996-4_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43996-4_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43995-7

  • Online ISBN: 978-3-031-43996-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics