Abstract
Automated surgical step recognition is an important task that can significantly improve patient safety and decision-making during surgeries. Existing state-of-the-art methods for surgical step recognition either rely on separate, multi-stage modeling of spatial and temporal information or operate on short-range temporal resolution when learned jointly. However, the benefits of joint modeling of spatio-temporal features and long-range information are not taken in account. In this paper, we propose a vision transformer-based approach to jointly learn spatio-temporal features directly from sequence of frame-level patches. Our method incorporates a gated-temporal attention mechanism that intelligently combines short-term and long-term spatio-temporal feature representations. We extensively evaluate our approach on two cataract surgery video datasets, namely Cataract-101 and D99, and demonstrate superior performance compared to various state-of-the-art methods. These results validate the suitability of our proposed approach for automated surgical step recognition. Our code is released at: https://github.com/nisargshah1999/GLSFormer.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Arnab, A., Dehghani, M., Heigold, G., Sun, C., Lučić, M., Schmid, C.: Vivit: a video vision transformer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6836–6846 (2021)
Bertasius, G., Wang, H., Torresani, L.: Is space-time attention all you need for video understanding? In: ICML, vol. 2, p. 4 (2021)
Blum, T., Feußner, H., Navab, N.: Modeling and segmentation of surgical workflow from laparoscopic video. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6363, pp. 400–407. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15711-0_50
Bricon-Souf, N., Newman, C.R.: Context awareness in health care: a review. Int. J. Med. Inform. 76(1), 2–12 (2007)
Czempiel, T., et al.: TeCNO: surgical phase recognition with multi-stage temporal convolutional networks. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12263, pp. 343–352. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59716-0_33
Dergachyova, O., Bouget, D., Huaulmé, A., Morandi, X., Jannin, P.: Automatic data-driven real-time segmentation and recognition of surgical workflow. Int. J. Comput. Assist. Radiol. Surg. 11(6), 1081–1089 (2016). https://doi.org/10.1007/s11548-016-1371-x
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)
Dosovitskiy, A., et al.: An image is worth \(16 \times 16\) words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)
Feichtenhofer, C., Fan, H., Malik, J., He, K.: Slowfast networks for video recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6202–6211 (2019)
Funke, I., Bodenstedt, S., Oehme, F., von Bechtolsheim, F., Weitz, J., Speidel, S.: Using 3D convolutional neural networks to learn spatiotemporal features for automatic surgical gesture recognition in video. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11768, pp. 467–475. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32254-0_52
Funke, I., Mees, S.T., Weitz, J., Speidel, S.: Video-based surgical skill assessment using 3D convolutional neural networks. Int. J. Comput. Assist. Radiol. Surg. 14, 1217–1225 (2019)
Gao, X., Jin, Y., Long, Y., Dou, Q., Heng, P.-A.: Trans-SVNet: accurate phase recognition from surgical videos via hybrid embedding aggregation transformer. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12904, pp. 593–603. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87202-1_57
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Huaulmé, A., Jannin, P., Reche, F., Faucheron, J.L., Moreau-Gaudry, A., Voros, S.: Offline identification of surgical deviations in laparoscopic rectopexy. Artif. Intell. Med. 104, 101837 (2020)
Jin, Y., et al.: SV-RCNet: workflow recognition from surgical videos using recurrent convolutional network. IEEE Trans. Med. Imaging 37(5), 1114–1126 (2017)
Jin, Y., Long, Y., Chen, C., Zhao, Z., Dou, Q., Heng, P.A.: Temporal memory relation network for workflow recognition from surgical video. IEEE Trans. Med. Imaging 40(7), 1911–1923 (2021)
Kay, W., et al.: The kinetics human action video dataset. arXiv preprint arXiv:1705.06950 (2017)
Lalys, F., Bouget, D., Riffaud, L., Jannin, P.: Automatic knowledge-based recognition of low-level tasks in ophthalmological procedures. Int. J. Comput. Assist. Radiol. Surg. 8, 39–49 (2013)
Lea, C., Hager, G.D., Vidal, R.: An improved model for segmentation and recognition of fine-grained activities with application to surgical training tasks. In: 2015 IEEE Winter Conference on Applications of Computer Vision, pp. 1123–1129. IEEE (2015)
Lecuyer, G., Ragot, M., Martin, N., Launay, L., Jannin, P.: Assisted phase and step annotation for surgical videos. Int. J. Comput. Assist. Radiol. Surg. 15(4), 673–680 (2020). https://doi.org/10.1007/s11548-019-02108-8
Padoy, N.: Machine and deep learning for workflow recognition during surgery. Minim. Invasive Therapy Allied Technol. 28(2), 82–90 (2019)
Schoeffmann, K., Taschwer, M., Sarny, S., Münzer, B., Primus, M.J., Putzgruber, D.: Cataract-101: video dataset of 101 cataract surgeries. In: Proceedings of the 9th ACM Multimedia Systems Conference, pp. 421–425 (2018)
Tao, L., Zappella, L., Hager, G.D., Vidal, R.: Surgical gesture segmentation and recognition. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8151, pp. 339–346. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40760-4_43
Twinanda, A.P., Shehata, S., Mutter, D., Marescaux, J., De Mathelin, M., Padoy, N.: EndoNet: a deep architecture for recognition tasks on laparoscopic videos. IEEE Trans. Med. Imaging 36(1), 86–97 (2016)
Yi, F., Jiang, T.: Hard frame detection and online mapping for surgical phase recognition. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11768, pp. 449–457. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32254-0_50
Yu, F., et al.: Assessment of automated identification of phases in videos of cataract surgery using machine learning and deep learning techniques. JAMA Netw. Open 2(4), e191860–e191860 (2019)
Zhang, J., et al.: Symmetric dilated convolution for surgical gesture recognition. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12263, pp. 409–418. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59716-0_39
Zisimopoulos, O., et al.: DeepPhase: surgical phase recognition in CATARACTS videos. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 265–272. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_31
Acknowledgements
This work was supported by a grant from the National Institutes of Health, USA; R01EY033065. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Shah, N.A., Sikder, S., Vedula, S.S., Patel, V.M. (2023). \(\textsf{GLSFormer}\): Gated - Long, Short Sequence Transformer for Step Recognition in Surgical Videos. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14228. Springer, Cham. https://doi.org/10.1007/978-3-031-43996-4_37
Download citation
DOI: https://doi.org/10.1007/978-3-031-43996-4_37
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-43995-7
Online ISBN: 978-3-031-43996-4
eBook Packages: Computer ScienceComputer Science (R0)