Skip to main content

Optical Coherence Elastography Needle for Biomechanical Characterization of Deep Tissue

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

Compression-based optical coherence elastography (OCE) enables characterization of soft tissue by estimating elastic properties. However, previous probe designs have been limited to surface applications. We propose a bevel tip OCE needle probe for percutaneous insertions, where biomechanical characterization of deep tissue could enable precise needle placement, e.g., in prostate biopsy. We consider a dual-fiber OCE needle probe that provides estimates of local strain and load at the tip. Using a novel setup, we simulate deep tissue indentations where frictional forces and bulk sample displacement can affect biomechanical characterization. Performing surface and deep tissue indentation experiments, we compare our approach with external force and needle position measurements at the needle shaft. We consider two tissue mimicking materials simulating healthy and cancerous tissue and demonstrate that our probe can be inserted into deep tissue layers. Compared to surface indentations, external force-position measurements are strongly affected by frictional forces and bulk displacement and show a relative error of 49.2% and 42.4% for soft and stiff phantoms, respectively. In contrast, quantitative OCE measurements show a reduced relative error of 26.4% and 4.9% for deep indentations of soft and stiff phantoms, respectively. Finally, we demonstrate that the OCE measurements can be used to effectively discriminate the tissue mimicking phantoms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allen, W.M., et al.: Wide-field quantitative micro-elastography of human breast tissue. Biomed. Opt. Express 9(3), 1082–1096 (2018). https://doi.org/10.1364/BOE.9.001082

    Article  Google Scholar 

  2. Fang, Q., et al.: Handheld probe for quantitative micro-elastography. Biomed. Opt. Express 10(8), 4034–4049 (2019). https://doi.org/10.1364/BOE.10.004034

    Article  Google Scholar 

  3. Gessert, N., et al.: Needle tip force estimation using an OCT fiber and a fused convGRU-CNN architecture. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 222–229. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_26

    Chapter  Google Scholar 

  4. Good, D.W., et al.: Elasticity as a biomarker for prostate cancer: a systematic review. BJU Int. 113(4), 523–534 (2014). https://doi.org/10.1111/bju.12236

    Article  Google Scholar 

  5. Iele, A., et al.: Miniaturized optical fiber probe for prostate cancer screening. Biomed. Opt. Express 12(9), 5691–5703 (2021). https://doi.org/10.1364/BOE.430408

    Article  Google Scholar 

  6. Jiang, S., Li, P., Yu, Y., Liu, J., Yang, Z.: Experimental study of needle-tissue interaction forces: effect of needle geometries, insertion methods and tissue characteristics. J. Biomech. 47(13), 3344–3353 (2014). https://doi.org/10.1016/j.jbiomech.2014.08.007

    Article  Google Scholar 

  7. Kawano, S., et al.: Assessment of elasticity of colorectal cancer tissue, clinical utility, pathological and phenotypical relevance. Cancer Sci. 106(9), 1232–1239 (2015). https://doi.org/10.1111/cas.12720

    Article  Google Scholar 

  8. Kennedy, B.F., Kennedy, K.M., Sampson, D.D.: A review of optical coherence elastography: fundamentals, techniques and prospects (2014). https://doi.org/10.1109/JSTQE.2013.2291445

  9. Kennedy, K.M., et al.: Needle optical coherence elastography for the measurement of microscale mechanical contrast deep within human breast tissues. J. Biomed. Opt. 18(12), 121510 (2013). https://doi.org/10.1117/1.JBO.18.12.121510

  10. Kennedy, K.M., et al.: Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography. Sci. Rep. 5(Apr), 1–12 (2015). https://doi.org/10.1038/srep15538

    Article  Google Scholar 

  11. Krouskop, T.A., Wheeler, T.M., Kallel, F., Garra, B.S., Hall, T.: Elastic moduli of breast and prostate tissues under compression. Ultrason. Imaging 20(4), 260–274 (1998). https://doi.org/10.1177/016173469802000403

    Article  Google Scholar 

  12. McKee, C.T., Last, J.A., Russell, P., Murphy, C.J.: Indentation versus tensile measurements of young’s modulus for soft biological tissues. Tissue Eng. Part B Rev. 17(3), 155–164 (2011). https://doi.org/10.1089/ten.TEB.2010.0520

  13. Mieling, R., Sprenger, J., Latus, S., Bargsten, L., Schlaefer, A.: A novel optical needle probe for deep learning-based tissue elasticity characterization. Curr. Dir. Biomed. Eng. 7(1), 21–25 (2021). https://doi.org/10.1515/cdbme-2021-1005

    Article  Google Scholar 

  14. Oderda, M., et al.: Accuracy of elastic fusion biopsy in daily practice: results of a multicenter study of 2115 patients. Int. J. Urol. 25(12), 990–997 (2018). https://doi.org/10.1111/IJU.13796

    Article  Google Scholar 

  15. Okamura, A.M., Simone, C., O’Leary, M.D.: Force modeling for needle insertion into soft tissue. IEEE Trans. Biomed. Eng. 51(10), 1707–1716 (2004). https://doi.org/10.1109/TBME.2004.831542

    Article  Google Scholar 

  16. Plekhanov, A.A., et al.: Histological validation of in vivo assessment of cancer tissue inhomogeneity and automated morphological segmentation enabled by optical coherence elastography. Sci. Rep. 10(1), 11781 (2020). https://doi.org/10.1038/s41598-020-68631-w

    Article  Google Scholar 

  17. Qiu, Y., et al.: Quantitative optical coherence elastography based on fiber-optic probe for in situ measurement of tissue mechanical properties. Biomed. Opt. Express 7(2), 688 (2016). https://doi.org/10.1364/boe.7.000688

  18. Rosenkrantz, A.B., et al.: Prostate magnetic resonance imaging and magnetic resonance imaging targeted biopsy in patients with a prior negative biopsy: a consensus statement by AUA and SAR. J. Urol. 196(6), 1613–1618 (2016). https://doi.org/10.1016/j.juro.2016.06.079

  19. Samani, A., Zubovits, J., Plewes, D.: Elastic moduli of normal and pathological human breast tissues: an inversion-technique-based investigation of 169 samples. Phys. Med. Biol. 52(6), 1565 (2007)

    Article  Google Scholar 

  20. Schouten, M.G., et al.: Evaluation of a robotic technique for transrectal MRI-guided prostate biopsies. Eur. Radiol. 22(2), 476–483 (2012). https://doi.org/10.1007/s00330-011-2259-3

  21. Singh, M., Nair, A., Aglyamov, S.R., Larin, K.V.: Compressional optical coherence elastography of the cornea. Photonics 8(4), 111 (2021). https://doi.org/10.3390/photonics8040111

    Article  Google Scholar 

  22. de Stefano, V.S., Ford, M.R., Seven, I., Dupps, W.J.: Live human assessment of depth-dependent corneal displacements with swept-source optical coherence elastography. PLoS ONE 13(12), e0209480 (2018). https://doi.org/10.1371/journal.pone.0209480

    Article  Google Scholar 

  23. Wang, X., Wu, Q., Chen, J., Mo, J.: Development of a handheld compression optical coherence elastography probe with a disposable stress sensor. Opt. Lett. 46(15), 3669 (2021). https://doi.org/10.1364/ol.429955

    Article  Google Scholar 

  24. Xu, H., et al.: MRI-guided robotic prostate biopsy: a clinical accuracy validation. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6363, pp. 383–391. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15711-0_48

    Chapter  Google Scholar 

  25. Yang, C., Xie, Y., Liu, S., Sun, D.: Force modeling, identification, and feedback control of robot-assisted needle insertion: a survey of the literature. Sensors 18(2) (2018). https://doi.org/10.3390/S18020561

  26. Zaitsev, V.Y., et al.: Strain and elasticity imaging in compression optical coherence elastography: the two-decade perspective and recent advances (2021). https://doi.org/10.1002/jbio.202000257

Download references

Acknowledgements

This work was partially funded by Deutsche Forschungsgemeinschaft under Grant SCHL 1844/6-1, the \(i^3\) initiative of Hamburg University of Technology, and the Interdisciplinary Competence Center for Interface Research (ICCIR) on behalf of the University Medical Center Hamburg-Eppendorf and the Hamburg University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin Mieling .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1606 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mieling, R., Latus, S., Fischer, M., Behrendt, F., Schlaefer, A. (2023). Optical Coherence Elastography Needle for Biomechanical Characterization of Deep Tissue. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14228. Springer, Cham. https://doi.org/10.1007/978-3-031-43996-4_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43996-4_58

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43995-7

  • Online ISBN: 978-3-031-43996-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics