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Abstract. Hyperspectral imaging (HSI) captures a greater level of spec-
tral detail than traditional optical imaging, making it a potentially valu-
able intraoperative tool when precise tissue differentiation is essential.
Hardware limitations of current optical systems used for handheld real-
time video HSI result in a limited focal depth, thereby posing usability
issues for integration of the technology into the operating room. This
work integrates a focus-tunable liquid lens into a video HSI exoscope,
and proposes novel video autofocusing methods based on deep reinforce-
ment learning. A first-of-its-kind robotic focal-time scan was performed
to create a realistic and reproducible testing dataset. We benchmarked
our proposed autofocus algorithm against traditional policies, and found
our novel approach to perform significantly (p < 0.05) better than tra-
ditional techniques (0.070 ± .098 mean absolute focal error compared
to 0.146 ± .148). In addition, we performed a blinded usability trial by
having two neurosurgeons compare the system with different autofocus
policies, and found our novel approach to be the most favourable, making
our system a desirable addition for intraoperative HSI.

Keywords: Autofocus · Deep Reinforcement Learning · Hyperspectral
Imaging · Computer Assisted Intervention.

1 Introduction

1.1 Background

Traditional optical imaging samples the visual spectrum in three diffuse spec-
tral bands (RGB), while hyperspectral imaging (HSI) provides much more de-
tailed spectral information. This information is potentially valuable for making
intraoperative decisions, particularly in cases where tissue differentiation is crit-
ical but challenging to perform using traditional visualisation techniques. In the
case of brain tumour excision, fluorescence-guided resection is commonly used
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to minimize damage to healthy tissue [2] but is limited to high-grade gliomas,
and results in added cost and workflow disruptions. Thanks to a more detailed
definition between tissue types [5], HSI is seen as a promising alternative with
wider applicability and smoother integration into the workflow.

While HSI has been integrated into surgical microscope systems [11], it is
suggested that handheld systems are better suited to translational research [4].
Such handheld systems consist of an exoscope coupled to a draped optical stack,
as shown in Fig. 1. The optics in the exoscope typically result in a short fo-
cal depth, making manual focusing tricky, particularly as the tuning must be
performed through the drape. As such, these systems are commonly left at a
fixed focal power and the surgeon must keep the working distance fixed to keep
the subject in focus. Furthermore, the narrow spectral bands of HSI sensors
reduce the amount of light collected [12]. To avoid increasing exposure time,
a large aperture size is needed, at a cost of further reducing focal depth. This
exacerbates the focusing issues, making current real-time handheld HSI imag-
ing systems particularly challenging to focus, posing significant usability issues.
Fig. 1 highlights the limited focal depth of our system, and shows a typical target
that the surgeon must manually bring into focus during surgery.

The issue of reduced focal depth in real-time HSI systems could be mitigated
by the introduction of a video autofocus system. Autofocus methods are divided
into active methods, which use transmission to probe the scene, and passive
methods, which rely only on incoming light. Passive methods are further split
into phase-based, which require specialised hardware, and contrast-based, which
compare images captured at different focal powers. Our investigation focuses on
contrast-based methods, which require minimal hardware development.

Fig. 1: Left) Existing fixed-focus HSI system being used during neurosurgery in
an ethically approved study. Right) RGB reconstruction of an image taken with
the fixed-focus HSI system following a craniotomy. The focus has been manually
adjusted for the cavity visible through the craniotomy (circled).
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1.2 Related Autofocusing Works

While autofocusing systems are prevalent in consumer device, the scientific lit-
erature is sparse, especially for dynamic video autofocusing. Many publications
in the field are concerned with benchtop microscope autofocus systems [8,15,7].
This environment is conducive to autofocus as the scene is typically static with a
single focal plane across the whole image. Additionally, the focus can be adjusted
easily by moving the stage vertically. [8] take a traditional approach, making use
of a Laplacian focal metric combined with a modified hill-climber optimisation
scheme. [15] input a stack of sequential images to a 3d convolutional neural net-
work (CNN) trained as a deep reinforcement agent trained to output changes in
stage height. [7] train a CNN to regress the optimal focal power from just two
images taken at different focal powers. Beyond benchtop microscopy, [6] also use
a CNN to directly regress optimal focal powers, this time from varying number of
samples from the full focal stacks. [1] take a novel approach by using pre-trained
object detection models to generate latent vector representations of images and
using these as inputs to a deep reinforcement agent. [14] train two CNNs, one
to regress focal steps from a single image, the other to determine if the current
image is in focus.

1.3 Contributions

This work aims to improve intraoperative handheld HSI systems by alleviating
one of their main usability drawbacks, that of shortened focal depth. We in-
troduce an autofocus system to an existing handheld intraoperative real-time
HSI system [4]. The focus adjustments are handled by a focus tunable liquid
lens which is integrated into the setup. We propose autofocusing policies based
on deep reinforcement learning and compare these to traditional heuristic ap-
proaches. Our final model is similar to that presented in [15] but differs in its
use of a weight shared image encoder, software simulated defocusing for train-
ing data, and small input patch size. In addition, our method is designed and
trained to handle dynamic environments, something entirely missing in the lit-
erature. We performed a robotic focal-time scan to create a reproducible testing
benchmark and allow quantitative comparison of autofocus policies. Finally, we
demonstrate the utility of our approach in a blinded user study involving two
neurosurgeons.

2 Materials and Methods

2.1 Optical System

Our intraoperative HSI system, shown in Fig. 2, builds on our existing system [4]
by integrating an Optotune EL-10-30-Ci focus-tunable liquid lens to allow elec-
trical control of the focal length. The hyperspectral camera is based on an IMEC
2/3” snapshot mosaic CMV2K-SSM4X4-VIS sensor, which acquires 16 spectral
bands in a 4×4 mosaic between the spectral range of 460 nm and 600 nm. With
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Fig. 2: Schematic diagram of our intraoperative video HSI system with focus-
tunable liquid lens, allowing electrically controllable focal length. The handheld
portion of the system is shown in the dashed line box.

a sensor resolution of 2048×1088 pixels, hyperspectral data is acquired with
a spatial resolution of 512×272 pixels per spectral band. Video-rate imaging of
snapshot data is achieved with a speed of up to 50 FPS depending on acquisition
parameters.

2.2 Datasets

Software Simulated Focal-Time Scans We define a focal-time scan as a
time series of focal stacks, with a focal stack being a single image captured at
multiple focal lengths. In order to assemble a large and diverse focal-time scan
dataset, we choose to simulate focal-time scans using existing in-focus video
data. To ensure the resulting focal-time scan features diverse camera motion,
we implement a smooth random walk to step a cropping rectangle across the
video after each frame. This also allows for the construction of plausible focal-
time scans from single images, although features such as dynamic subjects or
imaging noise will be missing. In order to simulate defocus, we implement another
random walk to simulate a dynamic optimal focal power. When an agent is
interacting with the simulated scan, a Gaussian filter is used to approximate
focal blurring with σ = σ0|f∗ − f | where f and f∗ are the current and optimal
focal powers and σ0 is chosen randomly from the range 2–8 for each scan. We
use this technique to create a training and testing dataset consisting of 1000 and
200 simulated focal-time scans based on 200 10-second video clips sampled from
Cholec80 [13], a popular endoscopic dataset. In addition, we created simulated
focal-time scans from 200 in focus images taken of a brain phantom with our HSI
system. These act as a validation dataset to help prevent over fitting and aid
generalisation. While Gaussian blur is a reasonable approximation, we note that
more rigours methods exist to simulate defocus blur that may produce better
simulated data [9].

Robotic Focal-Time Scan As a testing dataset similar to our intended use
case, we chose to approximate a real focal-time scan by controlling conditions
during capture of the individual focal stacks. Our optical system was fixed to
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Fig. 3: Left) Robotic arm holding our optical system imaging a brain phantom.
Right) Sample from our robotic focal-time scan, with the columns representing
sequential focal stacks sampled at focal powers of 0.2, 0.5 and 0.8 (top to bot-
tom). For low focal powers, the focal plane is behind the phantom (upper row).
As the focal power increases, the focal plane intersects with the fissure (middle
row), and then with the area surrounding the fissure (bottom row).

a robotic arm, which was then used in a compliant control mode to record a
natural hand-guided trajectory whilst imaging a brain phantom. The motion
was performed to try to emulate typical usage during a surgery, whilst also
trying to cover the range of plausible working distances. The focal range of the
liquid lens is discretised into a set of focal powers, and the recorded trajectory is
discretised into a sequence of 1184 poses. For each discrete pose, the robotic arm
is fixed, and an image captured for each focal power. We randomise the order of
the focal powers to reduce systematic bias caused by the response of the liquid
lens. Auto-exposure was implemented in order to ensure good exposure across
all working distances. To ensure consistency within a given focal stack, auto-
exposure was only stepped in-between discrete poses. The robotic arm holding
our optical system and a sample of the resulting focal-time scan can be seen
in Fig. 3. The optimal focus for all focal stacks was computed via global search
of a traditional focal metric (mean gradient magnitude) as detailed below. This
was then validated visually and corrected where appropriate.

Integration and Usability Trial To ensure the validity of our quantitative
evaluation, and to get feedback on the system in general, a blinded trial was set
up with two practising neurosurgeons. A set was made containing two repeats
of three selected autofocus policies. This set was then shuffled, and the surgeons
remained blinded to the autofocus policy until after the trial. Each surgeon used
our optical system to inspect a brain phantom with each policy in the set. The
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surgeon was made aware when the policy was changed and prompted to make
comments throughout the trial, which were recorded.

2.3 Autofocus Policies

As seen in Fig. 1, the area of surgical interest can make up a rather small amount
of the overall image, as such, we limit ourselves to a patch size of just 32 × 32
pixels. The positioning of the patch could be dictated by a second algorithm or
user input, but this is outside the scope of this work. Here, we simply position
the patch at the centre of the circular content area, which is detected using the
method presented in [3]. All of our autofocus policies deal with the grayscale
reconstruction of the HSI images. Throughout this work, we further deal with a
normalised focal power range (0–1).

Traditional Approach We implement two traditional autofocus policy based
on different focal metrics combined with a simple hill-climber optimisation policy.
We choose mean gradient magnitude (MGM) and mean local ratio (MLR). Two
focal metrics which are conceptually simple but competitive [6] and implemented
in quite different ways. They are defined as

ϕMGM(I) =
1

n

∑
p

√
Ix

2(p) + Iy
2(p) (1)

ϕMLR(I) =
1

n

∑
p

max

(
Gσ(I)(p) + 1

I(p) + 1
,

I(p) + 1

Gσ(I)(p) + 1

)
(2)

where p is the set of all pixels in the image, Ix and Iy are defined as the x and y
responses of a Sobel filter, and Gσ is a Gaussian blur. The kernel size is chosen
as σ = 4 for all our experiments. Our hill-climber optimisation policy OHC sets
the focal power f at time t+ 1 based on information at time t and is defined as

ft+1 = OHC(ϕt, ft, ϕt−1) =

{
ft + dprevh, if 0 < ft < 1 and ϕt > ϕt−1

ft − dprevh, otherwise
(3)

where dprev = sign(ft−ft−1) is the direction of the previous step and h is a step
size which we set to h = 0.05 for all our experiments. We note that our definition
is different from standard hill-climber. A normal hill-climber will repeat a step
while the focal metric is increasing, and either stop or change direction with a
smaller step size when the focal metric decreases, but this does not translate to
a continuous and dynamic environment.

Learned Optimisation Policy Due to our dynamic environment, it seems
likely that considering a sequence of the N last focal metrics, rather than the
last two, would help to build a strong optimisation policy. However, as N in-
creases, it quickly becomes unclear how to incorporate this information effec-
tively. It is likely that a learning based solution would uncover a better strategy
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than heuristic approaches. While regression based approcahes may work, rein-
forcement learning provides a natural framework for this problem by allowing
the policy to model the trade-off between maximisation and exploration. By
modelling the autofocus task as a Markov process, we can define a Q-function
Q(s, a) which maps state-action pairs to expected future rewards. We define our
state, actions, and reward function as

st = {ϕt, ft, ..., ϕt−(N−1), ft−(N−1)}
A = {−h, 0,+h}
rt = −|f∗

t − ft|

where f∗
t is the optimal focal power at t which can only be known in controlled

environment. As before, we take h = 0.05. Our learned optimisation policy ORL

can then be defined as

ft+1 = ORL(ft, st) = ft +max
a

Q(st, a) (4)

To model Q(s, a), we use an MLP consisting of 2 hidden layers of 256 ReLUs each
and a third layer with 3 outputs corresponding to the 3 possible actions. The
MLP takes as input the state vector s containing the N most recent focal metrics
and focal powers, we take N = 8 for all our experiments. To train the model,
we use Deep Q Learning following the recommendations set out by the DQN
method [10] to improve training stability. We use an experience memory with
size 2.5× 106, and an ϵ-greedy exploration policy where ϵ exponentially decays
from 1.0 to 0.1 over the first 2 × 106 experiences. Our target model is updated
with exponential moving average (EMA) weight updates with a β = 0.005, and
we use γ = 0.99 in our Bellman equation. Finally, we use a smoothed L1 loss
function and optimise with RMSProp with learning rate 1×10−5 and momentum
0.95. We trained on our software simulated focal-time scans created from real
endoscopy videos and validated against our simulated focal-time scans created
with HSI images taken with our optical system mounted on a robotic arm.

End-to-End Model In addition to learning the optimisation policy, we can also
learn the focal metric. By learning the two together, we are no longer constrained
to a scalar metric and can instead learn a latent vector encoding of the image
patches. To do this, we construct a CNN consisting of 4 convolutions with 8
filters each and a stride of 2, outputting a vector of 8 logits for our patch size
of 32 × 32. The CNN is run on each of the N most recent image patches as
a batch during training, but only the most recent during inference, with the
previous encodings stored between steps. The encodings are concatenated with
the N most recent focal powers and fed into an MLP. The MLP and training
procedure are the same as before.

3 Results

We evaluated each autofocus policies on both our simulated focal-time scan test
set, and the robotically recorded focal-time scan. The mean focal errors are
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shown in Table 1. The scores show an improvement in almost all cases by the
introduction of a learned optimiser. The paths taken and the focal error over
time for the robotic focal-time scan for a selection of policies are plotted in
Fig. 4.

During the usability trial, the surgeon participants were positive about all
presented policies. In line with our quantitative results, the participants both
showed preference for the CNN-based policy. It was thought by both to be
smoother and more deliberate in its adjustments, and felt more robust to minor
accidental motions inherent to hand-operated system. One commented that it
felt slower to focus but more stable, going on to state that this was desirable
behaviour. All algorithms handled the brain fissure well, this is likely due to the
small patch size used, allowing for precise targeting. Overall, the surgeons were
very positive about the integration of autofocus into optical imaging systems.
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Fig. 4: Focal path (top) and error in focal power (bottom) for three autofocus
policies on the robotic focal-time scan. The optimal focal power is shown in
black. All paths have been smoothed with a moving average with a window of 5
frames for visualisation purposes.

4 Conclusion

We have successfully designed a handheld intraoperative HSI imaging system
with autofocusing capability. We developed a novel CNN-based autofocus policy
suitable for video data. In addition, we performed a robotic focal-time scan to
evaluate our methods. Our novel method significantly outperforms a traditional
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Table 1: Mean absolute focal power error (0 to 1), and the percentage of in focus
frames (focal power error < 0.1), for different autofocus policies on both the
simulated and robotic focal-time scan testing sets.

Autofocus policy Focal power error (MAE) In focus frames
Metric Optimiser Simulated Robotic Simulated Robotic
n/a fixed 0.236±.152 0.262±.161 19.0% 26.4%

MGM hill-climber 0.102±.138 0.146±.148 67.9% 46.4%
MLR hill-climber 0.092±.118 0.163±.168 68.2% 44.1%
MGM learned 0.085±.115 0.126±.118 70.4% 50.8%
MLR learned 0.098±.120 0.156±.131 66.4% 39.5%
CNN learned 0.049±.072 0.070±.099 84.9% 79.1%

baseline on our robotic focal-time scan, and performs preferably in a usability
trial by two neurosurgeons. The comments from the usability trial also suggest
that the dynamic video autofocusing systems will be well received among sur-
geons.
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