Skip to main content

CDiffMR: Can We Replace the Gaussian Noise with K-Space Undersampling for Fast MRI?

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14229))

  • 6021 Accesses

Abstract

Deep learning has shown the capability to substantially accelerate MRI reconstruction while acquiring fewer measurements. Recently, diffusion models have gained burgeoning interests as a novel group of deep learning-based generative methods. These methods seek to sample data points that belong to a target distribution from a Gaussian distribution, which has been successfully extended to MRI reconstruction. In this work, we proposed a Cold Diffusion-based MRI reconstruction method called CDiffMR. Different from conventional diffusion models, the degradation operation of our CDiffMR is based on k-space undersampling instead of adding Gaussian noise, and the restoration network is trained to harness a de-aliaseing function. We also design starting point and data consistency conditioning strategies to guide and accelerate the reverse process. More intriguingly, the pre-trained CDiffMR model can be reused for reconstruction tasks with different undersampling rates. We demonstrated, through extensive numerical and visual experiments, that the proposed CDiffMR can achieve comparable or even superior reconstruction results than state-of-the-art models. Compared to the diffusion model-based counterpart, CDiffMR reaches readily competing results using only 1.6–3.4% for inference time. The code is publicly available at https://github.com/ayanglab/CDiffMR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/ermongroup/ddim.

References

  1. Bansal, A., et al.: Cold diffusion: inverting arbitrary image transforms without noise. arXiv e-prints p. arXiv:2208.09392 (2022)

  2. Cao, C., Cui, Z.X., Liu, S., Zheng, H., Liang, D., Zhu, Y.: High-frequency space diffusion models for accelerated MRI. arXiv e-prints p. arXiv:2208.05481 (2022)

  3. Cao, Y., Wang, L., Zhang, J., Xia, H., Yang, F., Zhu, Y.: Accelerating multi-echo MRI in k-space with complex-valued diffusion probabilistic model. In: 2022 16th IEEE International Conference on Signal Processing (ICSP), vol. 1, pp. 479–484 (2022)

    Google Scholar 

  4. Chen, E.Z., Wang, P., Chen, X., Chen, T., Sun, S.: Pyramid convolutional RNN for MRI image reconstruction. IEEE Trans. Med. Imaging 41(8), 2033–2047 (2022)

    Article  Google Scholar 

  5. Chen, Y., et al.: AI-based reconstruction for fast MRI-A systematic review and meta-analysis. Proc. IEEE 110(2), 224–245 (2022)

    Article  Google Scholar 

  6. Chung, H., Sim, B., Ye, J.C.: Come-closer-diffuse-faster: accelerating conditional diffusion models for inverse problems through stochastic contraction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12413–12422 (2022)

    Google Scholar 

  7. Chung, H., Ye, J.C.: Score-based diffusion models for accelerated MRI. Med. Image Anal. 80, 102479 (2022)

    Article  Google Scholar 

  8. Güngör, A., et al.: Adaptive diffusion priors for accelerated MRI reconstruction. arXiv e-prints p. arXiv:2207.05876 (2022)

  9. Guo, P., Valanarasu, J.M.J., Wang, P., Zhou, J., Jiang, S., Patel, V.M.: Over-and-under complete convolutional RNN for MRI reconstruction. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12906, pp. 13–23. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87231-1_2

    Chapter  Google Scholar 

  10. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. In: Advances in Neural Information Processing Systems, vol. 33. Curran Associates, Inc. (2020)

    Google Scholar 

  11. Huang, J., Aviles-Rivero, A., Schonlieb, C.B., Yang, G.: ViGU: vision GNN U-net for fast MRI. arXiv e-prints p. arXiv:2302.10273 (2023)

  12. Huang, J., et al.: Swin transformer for fast MRI. Neurocomputing 493, 281–304 (2022)

    Article  Google Scholar 

  13. Korkmaz, Y., Dar, S.U.H., Yurt, M., Özbey, M., Çukur, T.: Unsupervised MRI reconstruction via zero-shot learned adversarial transformers. IEEE Trans. Med. Imaging 41(7), 1747–1763 (2022)

    Article  Google Scholar 

  14. Peng, C., Guo, P., Zhou, S.K., Patel, V.M., Chellappa, R.: Towards performant and reliable undersampled MR reconstruction via diffusion model sampling. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13436, pp. 623–633. Springer, Cham (2022)

    Chapter  Google Scholar 

  15. Schlemper, J., Caballero, J., Hajnal, J.V., Price, A., Rueckert, D.: A deep cascade of convolutional neural networks for MR image reconstruction. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 647–658. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_51

    Chapter  Google Scholar 

  16. Shimron, E., Tamir, J.I., Wang, K., Lustig, M.: Implicit data crimes: machine learning bias arising from misuse of public data. Proc. Natl. Acad. Sci. 119(13), e2117203119 (2022)

    Article  MathSciNet  Google Scholar 

  17. Song, J., Meng, C., Ermon, S.: Denoising diffusion implicit models. arXiv e-prints p. arXiv:2010.02502 (2020)

  18. Song, Y., Ermon, S.: Generative modeling by estimating gradients of the data distribution. In: Advances in Neural Information Processing Systems, vol. 32. Curran Associates, Inc. (2019)

    Google Scholar 

  19. Song, Y., Shen, L., Xing, L., Ermon, S.: Solving inverse problems in medical imaging with score-based generative models. arXiv e-prints arXiv:2111.08005 (2021)

  20. Song, Y., Sohl-Dickstein, J., Kingma, D.P., Kumar, A., Ermon, S., Poole, B.: Score-based generative modeling through stochastic differential equations. arXiv e-prints arXiv:2011.13456 (2020)

  21. Yang, G., et al.: DAGAN: deep de-aliasing generative adversarial networks for fast compressed sensing MRI reconstruction. IEEE Trans. Med. Imaging 37(6), 1310–1321 (2018)

    Article  Google Scholar 

  22. Zbontar, J., et al.: fastMRI: an open dataset and benchmarks for accelerated MRI. arXiv e-prints p. arXiv:1811.08839 (2018)

  23. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 586–595 (2018)

    Google Scholar 

Download references

Acknowledgement

This study was supported in part by the ERC IMI (101005122), the H2020 (952172), the MRC (MC/PC/21013), the Royal Society (IEC\(\backslash \)NSFC\(\backslash \)211235), the NVIDIA Academic Hardware Grant Program, the SABER project supported by Boehringer Ingelheim Ltd, Wellcome Leap Dynamic Resilience, and the UKRI Future Leaders Fellowship (MR/V023799/1).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiahao Huang or Guang Yang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 21834 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, J., Aviles-Rivero, A.I., Schönlieb, CB., Yang, G. (2023). CDiffMR: Can We Replace the Gaussian Noise with K-Space Undersampling for Fast MRI?. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14229. Springer, Cham. https://doi.org/10.1007/978-3-031-43999-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43999-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43998-8

  • Online ISBN: 978-3-031-43999-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics