Skip to main content

Low-Dose CT Image Super-Resolution Network with Dual-Guidance Feature Distillation and Dual-Path Content Communication

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14229))

Abstract

Low-dose computer tomography (LDCT) has been widely used in medical diagnosis yet suffered from spatial resolution loss and artifacts. Numerous methods have been proposed to deal with those issues, but there still exists drawbacks: (1) convolution without guidance causes essential information not highlighted; (2) features with fixed-resolution lose the attention to multi-scale information; (3) single super-resolution module fails to balance details reconstruction and noise removal. Therefore, we propose an LDCT image super-resolution network consisting of a dual-guidance feature distillation backbone for elaborate visual feature extraction, and a dual-path content communication head for artifacts-free and details-clear CT reconstruction. Specifically, the dual-guidance feature distillation backbone is composed of a dual-guidance fusion module (DGFM) and a sampling attention block (SAB). The DGFM guides the network to concentrate the feature representation of the 3D inter-slice information in the region of interest (ROI) by introducing the average CT image and segmentation mask as complements of the original LDCT input. Meanwhile, the elaborate SAB utilizes the essential multi-scale features to capture visual information more relative to edges. The dual-path reconstruction architecture introduces the denoising head before and after the super-resolution (SR) head in each path to suppress residual artifacts, respectively. Furthermore, the heads with the same function share the parameters so as to efficiently improve the reconstruction performance by reducing the amount of parameters. The experiments compared with 6 state-of-the-art methods on 2 public datasets prove the superiority of our method. The code is made available at https://github.com/neu-szy/dual-guidance_LDCT_SR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bruno, D.M., Samit, B.: Distance-driven projection and backprojection in three dimensions. Phys. Med. Biol. 49(11), 2463–2475 (2004)

    Article  Google Scholar 

  2. Chen, H., et al.: Low-dose CT with a residual encoder-decoder convolutional neural network. IEEE Trans. Med. Imaging 36(12), 2524–2535 (2017)

    Article  Google Scholar 

  3. Chen, Y., Zheng, Q., Chen, J.: Double paths network with residual information distillation for improving lung CT image super resolution. Biomed. Sig. Process. Control 73, 103412 (2022)

    Article  Google Scholar 

  4. Chi, J., Sun, Z., Wang, H., Lyu, P., Yu, X., Wu, C.: CT image super-resolution reconstruction based on global hybrid attention. Comput. Biol. Med. 150, 106112 (2022)

    Article  Google Scholar 

  5. Clark, K., et al.: The cancer imaging archive (TCIA): maintaining and operating a public information repository. J. Digit. Imaging 26(6), 1045–1057 (2013)

    Article  Google Scholar 

  6. Dai, T., Cai, J., Zhang, Y., Xia, S.T., Zhang, L.: Second-order attention network for single image super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11065–11074 (2019)

    Google Scholar 

  7. Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 184–199. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10593-2_13

    Chapter  Google Scholar 

  8. Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 38(2), 295–307 (2015)

    Article  Google Scholar 

  9. Dong, C., Loy, C.C., Tang, X.: Accelerating the super-resolution convolutional neural network. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 391–407. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_25

    Chapter  Google Scholar 

  10. Hou, H., Jin, Q., Zhang, G., Li, Z.: Ct image quality enhancement via a dual-channel neural network with jointing denoising and super-resolution. Neurocomputing 492, 343–352 (2022)

    Article  Google Scholar 

  11. Huang, Y., Li, S., Wang, L., Tan, T., et al.: Unfolding the alternating optimization for blind super resolution. Adv. Neural. Inf. Process. Syst. 33, 5632–5643 (2020)

    Google Scholar 

  12. Huang, Y., Wang, Q., Omachi, S.: Rethinking degradation: radiograph super-resolution via AID-SRGAN. In: Lian, C., Cao, X., Rekik, I., Xu, X., Cui, Z. (eds.) Machine Learning in Medical Imaging, MLMI 2022. LNCS, vol. 13583, pp. 43–52. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-21014-3_5

  13. Irani, M., Peleg, S.: Super resolution from image sequences. In: 1990 Proceedings of the 10th International Conference on Pattern Recognition, vol. 2, pp. 115–120. IEEE (1990)

    Google Scholar 

  14. Irani, M., Peleg, S.: Improving resolution by image registration. Graph. Models Image Process. (CVGIP) 53(3), 231–239 (1991)

    Article  Google Scholar 

  15. Ji, X., Cao, Y., Tai, Y., Wang, C., Li, J., Huang, F.: Real-world super-resolution via kernel estimation and noise injection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 466–467 (2020)

    Google Scholar 

  16. Keys, R.: Cubic convolution interpolation for digital image processing. IEEE Trans. Acoust. Speech Sig. Process. 29(6), 1153–1160 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kim, J., Lee, J.K., Lee, K.M.: Accurate image super-resolution using very deep convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1646–1654 (2016)

    Google Scholar 

  18. Li, B., et al.: Diagnostic value and key features of computed tomography in coronavirus disease 2019. Emerg. Microbes Infect. 9(1), 787–793 (2020)

    Article  Google Scholar 

  19. Liang, J., Cao, J., Sun, G., Zhang, K., Van Gool, L., Timofte, R.: SwinIR: image restoration using Swin transformer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1833–1844 (2021)

    Google Scholar 

  20. Lim, B., Son, S., Kim, H., Nah, S., Mu Lee, K.: Enhanced deep residual networks for single image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 136–144 (2017)

    Google Scholar 

  21. Ma, C., Rao, Y., Lu, J., Zhou, J.: Structure-preserving image super-resolution. IEEE Trans. Pattern Anal. Mach. Intell. 44, 7898–7911 (2021)

    Article  Google Scholar 

  22. Prasad, K., Cole, W., Haase, G.: Radiation protection in humans: extending the concept of as low as reasonably achievable (ALARA) from dose to biological damage. Br. J. Radiol. 77(914), 97–99 (2004)

    Article  Google Scholar 

  23. Ramani, S., Fessler, J.A.: A splitting-based iterative algorithm for accelerated statistical X-ray CT reconstruction. IEEE Trans. Med. Imaging 31(3), 677–688 (2012)

    Article  Google Scholar 

  24. Schultz, R.R., Stevenson, R.L.: Extraction of high-resolution frames from video sequences. IEEE Trans. Image Process. 5(6), 996–1011 (1996)

    Article  Google Scholar 

  25. Smith, P.: Bilinear interpolation of digital images. Ultramicroscopy 6(2), 201–204 (1981)

    Article  Google Scholar 

  26. Stark, H., Oskoui, P.: High-resolution image recovery from image-plane arrays, using convex projections. JOSA A 6(11), 1715–1726 (1989)

    Article  Google Scholar 

  27. Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5693–5703 (2019)

    Google Scholar 

  28. Veronesi, G., et al.: Recommendations for implementing lung cancer screening with low-dose computed tomography in Europe. Cancers 12(6), 1672 (2020)

    Article  Google Scholar 

  29. Yin, X., et al.: Domain progressive 3D residual convolution network to improve low-dose CT imaging. IEEE Trans. Med. Imaging 38(12), 2903–2913 (2019)

    Article  Google Scholar 

  30. Zeng, D., et al.: A simple low-dose X-ray CT simulation from high-dose scan. IEEE Trans. Nucl. Sci. 62(5), 2226–2233 (2015)

    Article  Google Scholar 

  31. Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution using very deep residual channel attention networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 294–310. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_18

    Chapter  Google Scholar 

  32. Zhang, Y., Tian, Y., Kong, Y., Zhong, B., Fu, Y.: Residual dense network for image restoration. IEEE Trans. Pattern Anal. Mach. Intell. 43(7), 2480–2495 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China under Grant 61901098, 61971118, Science and Technology Plan of Liaoning Province 2021JH1/10400051.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianning Chi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chi, J., Sun, Z., Zhao, T., Wang, H., Yu, X., Wu, C. (2023). Low-Dose CT Image Super-Resolution Network with Dual-Guidance Feature Distillation and Dual-Path Content Communication. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14229. Springer, Cham. https://doi.org/10.1007/978-3-031-43999-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43999-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43998-8

  • Online ISBN: 978-3-031-43999-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics