Abstract
Metal artifacts in computed tomography (CT) degrade the imaging quality, leading to a negative impact on the clinical diagnosis. Empowered by medical big data, many DL-based approaches have been proposed for metal artifact reduction (MAR). In supervised MAR methods, models are usually trained on simulated data and then applied to the clinical data. However, inferior MAR performance on clinical data is usually observed due to the domain gap between simulated and clinical data. Existing unsupervised MAR methods usually use clinical unpaired data for training, which often distort the anatomical structure due to the absence of supervision information. To address these problems, we propose a novel semi-supervised MAR framework. The clean image is employed as the bridge between the synthetic and clinical metal-affected image domains to close the domain gap. We also break the cycle-consistency loss, which is often utilized for domain transformation, since the bijective assumption is too harsh to accurately respond to the facts of real situations. To further improve the MAR performance, we propose a new Artifact Filtering Module (AFM) to eliminate features helpless in recovering clean images. Experiments demonstrate that the performance of the proposed method is competitive with several state-of-the-art unsupervised and semi-supervised MAR methods in both qualitative and quantitative aspects.
This work was supported in part by the National Natural Science Foundation of China under Grant 62271335; in part by the Sichuan Science and Technology Program under Grant 2021JDJQ0024; and in part by the Sichuan University “From 0 to 1” Innovative Research Program under Grant 2022SCUH0016.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Babu, Y.M.M., Subramanyam, M.V., Prasad, M.G.: PCA based image denoising. Signal Image Process. 3(2), 236 (2012)
Ghani, M.U., Karl, W.C.: Fast enhanced CT metal artifact reduction using data domain deep learning. IEEE Tran. Comput. Imaging 6, 181–193 (2019)
Glocker, B., Zikic, D., Konukoglu, E., Haynor, D.R., Criminisi, A.: Vertebrae localization in pathological spine CT via dense classification from sparse annotations. In: Proceedings of the Medical Image Computing and Computer-Assisted Intervention, pp. 262–270 (2013)
Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance normalization. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2017)
Lee, J., Gu, J., Ye, J.C.: Unsupervised CT metal artifact learning using attention-guided \(\beta \)-CycleGAN. IEEE Trans. Med. Imaging 40(12), 3932–3944 (2021)
Lewitt, R.M., Bates, R.: Image reconstruction from projections III: projection completion methods. Optik 50, 189–204 (1978)
Li, Y., Chang, Y., Gao, Y., Yu, C., Yan, L.: Physically disentangled intra- and inter-domain adaptation for varicolored haze removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5841–5850 (2022)
Liao, H., et al.: Generative mask pyramid network for CT/CBCT metal artifact reduction with joint projection-sinogram correction. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 77–85. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_9
Liao, H., Lin, W.A., Zhou, S.K., Luo, J.: ADN: artifact disentanglement network for unsupervised metal artifact reduction. IEEE Trans. Med. Imaging 39(3), 634–643 (2019)
Lin, W.A., et al.: DuDoNet: dual domain network for CT metal artifact reduction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10512–10521 (2019)
Lyu, Y., Fu, J., Peng, C., Zhou, S.K.: U-DuDoNet: unpaired dual-domain network for CT metal artifact reduction. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12906, pp. 296–306. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87231-1_29
Lyu, Y., Lin, W.-A., Liao, H., Lu, J., Zhou, S.K.: Encoding metal mask projection for metal artifact reduction in computed tomography. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12262, pp. 147–157. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59713-9_15
Meyer, E., Raupach, R., Lell, M., Schmidt, B., Kachelriess, M.: Normalized metal artifact reduction (NMAR) in computed tomography. Med. Phys. 37(10), 5482–5493 (2010)
Niu, C., et al.: Low-dimensional manifold constrained disentanglement network for metal artifact reduction. IEEE Trans. Radiat. Plasma Med. Sci. 1–1 (2021). https://doi.org/10.1109/TRPMS.2021.3122071
Park, T., Liu, M.Y., Wang, T.C., Zhu, J.Y.: Semantic image synthesis with spatially-adaptive normalization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2337–2346 (2019)
Shao, Y., Li, L., Ren, W., Gao, C., Sang, N.: Domain adaptation for image dehazing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020)
Shi, Z., Wang, N., Kong, F., Cao, H., Cao, Q.: A semi-supervised learning method of latent features based on convolutional neural networks for CT metal artifact reduction. Med. Phys. 49(6), 3845–3859 (2022). https://doi.org/10.1002/mp.15633
Wang, M., Lang, C., Liang, L., Lyu, G., Feng, S., Wang, T.: Attentive generative adversarial network to bridge multi-domain gap for image synthesis. In: 2020 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6 (2020). https://doi.org/10.1109/ICME46284.2020.9102761
Wang, T., et al.: IDOL-net: an interactive dual-domain parallel network for CT metal artifact reduction. IEEE Trans. Radiat. Plasma Med. Sci. 1–1 (2022). https://doi.org/10.1109/TRPMS.2022.3171440
Wang, T., et al.: DAN-net: dual-domain adaptive-scaling non-local network for CT metal artifact reduction. Phys. Med. Biol. 66(15), 155009 (2021). https://doi.org/10.1088/1361-6560/ac1156
Wang, T., Yu, H., Lu, Z., Zhang, Z., Zhou, J., Zhang, Y.: Stay in the middle: a semi-supervised model for CT metal artifact reduction. In: ICASSP 2023–2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1–5 (2023). https://doi.org/10.1109/ICASSP49357.2023.10095681
Yu, H., et al.: DESEG: auto detector-based segmentation for brain metastases. Phys. Med. Biol. 68(2), 025002 (2023)
Yu, L., Zhang, Z., Li, X., Ren, H., Zhao, W., Xing, L.: Metal artifact reduction in 2D CT images with self-supervised cross-domain learning. Phys. Med. Biol. 66(17), 175003 (2021)
Yu, L., Zhang, Z., Li, X., Xing, L.: Deep sinogram completion with image prior for metal artifact reduction in CT images. IEEE Trans. Med. Imaging 40(1), 228–238 (2020)
Zhang, K., Li, Y.: Single image dehazing via semi-supervised domain translation and architecture search. IEEE Signal Process. Lett. 28, 2127–2131 (2021). https://doi.org/10.1109/LSP.2021.3120322
Zhang, Y., Yu, H.: Convolutional neural network based metal artifact reduction in x-ray computed tomography. IEEE Trans. Med. Imaging 37(6), 1370–1381 (2018)
Zhao, B., Li, J., Ren, Q., Zhong, Y.: Unsupervised reused convolutional network for metal artifact reduction. In: Yang, H., Pasupa, K., Leung, A.C.-S., Kwok, J.T., Chan, J.H., King, I. (eds.) ICONIP 2020. CCIS, vol. 1332, pp. 589–596. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-63820-7_67
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Wang, T., Yu, H., Liu, Y., Sun, H., Zhang, Y. (2023). Building a Bridge: Close the Domain Gap in CT Metal Artifact Reduction. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14229. Springer, Cham. https://doi.org/10.1007/978-3-031-43999-5_20
Download citation
DOI: https://doi.org/10.1007/978-3-031-43999-5_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-43998-8
Online ISBN: 978-3-031-43999-5
eBook Packages: Computer ScienceComputer Science (R0)