Abstract
Magnetic resonance imaging (MRI) may degrade with motion artifacts in the reconstructed MR images due to the long acquisition time. In this paper, we propose a dual domain motion correction network (D\(^2\)MC-Net) to correct the motion artifacts in 2D multi-slice MRI. Instead of explicitly estimating the motion parameters, we model the motion corruption by k-space uncertainty to guide the MRI reconstruction in an unfolded deep reconstruction network. Specifically, we model the motion correction task as a dual domain regularized model with an uncertainty-guided data consistency term. Inspired by its alternating iterative optimization algorithm, the D\(^2\)MC-Net is composed of multiple stages, and each stage consists of a k-space uncertainty module (KU-Module) and a dual domain reconstruction module (DDR-Module). The KU-Module quantifies the uncertainty of k-space corruption by motion. The DDR-Module reconstructs motion-free k-space data and MR image in both k-space and image domain, under the guidance of the k-space uncertainty. Extensive experiments on fastMRI dataset demonstrate that the proposed D\(^2\)MC-Net outperforms state-of-the-art methods under different motion trajectories and motion severities.
J. Wang and Y. Yang—Both authors contributed equally to this work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Al-masni, M.A., et al.: Stacked u-nets with self-assisted priors towards robust correction of rigid motion artifact in brain mri. Neuroimage 259, 119411 (2022)
Alexander, L., Hannes, N., Pohmannand, R., Bernhard, S.: Blind retrospective motion correction of MR images. Magn. Reson. Med. 70(6), 1608–1618 (2013)
Armanious, K., et al.: MedGAN: medical image translation using GANs. Comput. Med. Imaging Graph. 79, 101684 (2020)
Atkinson, D., Hill, D.L.G., Stoyle, P.N.R., Summers, P.E., Keevil, S.F.: Automatic correction of motion artifacts in magnetic resonance images using an entropy focus criterion. IEEE Trans. Med. Imaging 16(6), 903–910 (1997)
Ben, A.D., et al.: Retrospective motion artifact correction of structural MRI images using deep learning improves the quality of cortical surface reconstructions. Neuroimage 230, 117756 (2021)
Daniel, P., et al.: Scout accelerated motion estimation and reduction (SAMER). Magn. Reson. Med. 87(1), 163–178 (2022)
Florian, K., et al.: fastMRI: a publicly available raw k-space and DICOM dataset of knee images for accelerated MR image reconstruction using machine learning. Radiol. Artif. Intell. 2(1) (2020)
Haskell, M.W., et al.: Network accelerated motion estimation and reduction (NAMER): convolutional neural network guided retrospective motion correction using a separable motion model. Magn. Reson. Med. 82(4), 1452–1461 (2019)
Haskell, M.W., Cauley, S.F., Wald, L.L.: Targeted motion estimation and reduction (TAMER): data consistency based motion mitigation for MRI using a reduced model joint optimization. IEEE Trans. Med. Imaging 37(5), 1253–1265 (2018)
Junchi, L., Mehmet, K., Mark, S., Jie, D.: Motion artifacts reduction in brain MRI by means of a deep residual network with densely connected multi-resolution blocks (DRN-DCMB). Magn. Reson. Imaging 71, 69–79 (2020)
Kay, N., Peter, B.: Prospective correction of affine motion for arbitrary MR sequences on a clinical scanner. Magn. Reson. Med. 54(5), 1130–1138 (2005)
Kuzmina, E., Razumov, A., Rogov, O.Y., Adalsteinsson, E., White, J., Dylov, D.V.: Autofocusing+: Noise-resilient motion correction in magnetic resonance imaging. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13436, pp. 365–375. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16446-0_35
Lee, J., Kim, B., Park, H.: MC2-Net: motion correction network for multi-contrast brain MRI. Magn. Reson. Med. 86(2), 1077–1092 (2021)
Levac, B., Jalal, A., Tamir, J.I.: Accelerated motion correction for MRI using score-based generative models. arXiv (2022). https://arxiv.org/abs/2211.00199
Lucilio, C.G., Teixeira, R.P.A.G., Hughes, E.J., Hutter, J., Price, A.N., Hajnal, J.V.: Sensitivity encoding for aligned multishot magnetic resonance reconstruction. IEEE Trans. Comput. Imaging 2(3), 266–280 (2016)
Maxim, Z., Julian, M., Michael, H.: Motion artifacts in MRI: a complex problem with many partial solutions. J. Magn. Reson. Imaging 42(4), 887–901 (2015)
Singh, N.M., Iglesias, J.E., Adalsteinsson, E., Dalca, A.V., Golland, P.: Joint frequency and image space learning for MRI reconstruction and analysis. J. Mach. Learn. Biomed. Imaging (2022)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Thomas, K., Karim, A., Jiahuan, Y., Bin, Y., Fritz, S., Sergios, G.: Retrospective correction of motion-affected MR images using deep learning frameworks. Magn. Reson. Med. 82(4), 1527–1540 (2019)
Uecker, M., et al.: ESPIRiT-an eigenvalue approach to autocalibrating parallel MRI: where sense meets grappa. Magn. Reson. Med. 71(3), 990–1001 (2014)
Upadhyay, U., Chen, Y., Hepp, T., Gatidis, S., Akata, Z.: Uncertainty-guided progressive GANs for medical image translation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12903, pp. 614–624. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87199-4_58
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)
Wood, M.L., Henkelman, R.M.: MR image artifacts from periodic motion. Med. Phys. 12(2), 143–151 (1985)
Acknowledgements
This work is supported by National Key R &D Program of China (2022YFA1004201), National Natural Science Foundation of China (12090021, 12125104, 61721002, U20B2075).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Wang, J., Yang, Y., Yang, Y., Sun, J. (2023). Dual Domain Motion Artifacts Correction for MR Imaging Under Guidance of K-space Uncertainty. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14229. Springer, Cham. https://doi.org/10.1007/978-3-031-43999-5_28
Download citation
DOI: https://doi.org/10.1007/978-3-031-43999-5_28
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-43998-8
Online ISBN: 978-3-031-43999-5
eBook Packages: Computer ScienceComputer Science (R0)