Skip to main content

Revealing Anatomical Structures in PET to Generate CT for Attenuation Correction

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14229))

  • 3445 Accesses

Abstract

Positron emission tomography (PET) is a molecular imaging technique relying on a step, namely attenuation correction (AC), to correct radionuclide distribution based on pre-determined attenuation coefficients. Conventional AC techniques require additionally-acquired computed tomography (CT) or magnetic resonance (MR) images to calculate attenuation coefficients, which increases imaging expenses, time costs, or radiation hazards to patients, especially for whole-body scanners. In this paper, considering technological advances in acquiring more anatomical information in raw PET images, we propose to conduct attenuation correction to PET by itself. To achieve this, we design a deep learning based framework, namely anatomical skeleton-enhanced generation (ASEG), to generate pseudo CT images from non-attenuation corrected PET images for attenuation correction. Specifically, ASEG contains two sequential modules, i.e., a skeleton prediction module and a tissue rendering module. The former module first delineates anatomical skeleton and the latter module then renders tissue details. Both modules are trained collaboratively with specific anatomical-consistency constraint to guarantee tissue generation fidelity. Experiments on four public PET/CT datasets demonstrate that our ASEG outperforms existing methods by achieving better consistency of anatomical structures in generated CT images, which are further employed to conduct PET attenuation correction with better similarity to real ones. This work verifies the feasibility of generating pseudo CT from raw PET for attenuation correction without acquising additional images. The associated implementation is available at https://github.com/YongshengPan/ASEG-for-PET2CT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Armanious, K., et al.: Independent attenuation correction of whole body [18F] FDG-PET using a deep learning approach with generative adversarial networks. EJNMMI Res. 10(1), 1–9 (2020)

    Article  MathSciNet  Google Scholar 

  2. Dong, X., et al.: Synthetic CT generation from non-attenuation corrected PET images for whole-body PET imaging. Phys. Med. Biol. 64(21), 215016 (2019)

    Article  Google Scholar 

  3. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  4. Clark, K., Vendt, B., Smith, K., Freymann, J., Kirby, J., et al.: The cancer imaging archive (TCIA): maintaining and operating a public information repository. J. Digit. Imaging 26(6), 1045–1057 (2013)

    Article  Google Scholar 

  5. Guo, R., Xue, S., Hu, J., Sari, H., Mingels, C., et al.: Using domain knowledge for robust and generalizable deep learning-based CT-free PET attenuation and scatter correction. Nat. Commun. 13, 5882 (2022)

    Article  Google Scholar 

  6. Häggström, M.: Hounsfield units. https://radlines.org/Hounsfield_unit

  7. Liu, F., Jang, H., Kijowski, R., Bradshaw, T., McMillan, A.B.: Deep learning MR imaging-based attenuation correction for PET/MR imaging. Radiology 286(2), 676–684 (2018)

    Article  Google Scholar 

  8. Pan, Y., Liu, M., Xia, Y., Shen, D.: Disease-image-specific learning for diagnosis-oriented neuroimage synthesis with incomplete multi-modality data. IEEE Trans. Pattern Anal. Mach. Intell. 44, 6839–6853 (2021)

    Article  Google Scholar 

  9. Rabinovici, G.D., Gatsonis, C., Apgar, C., Chaudhary, K., Gareen, I., et al.: Association of amyloid positron emission tomography with subsequent change in clinical management among medicare beneficiaries with mild cognitive impairment or dementia. JAMA 321(13), 1286–1294 (2019)

    Article  Google Scholar 

  10. Rodríguez Colmeiro, R., Verrastro, C., Minsky, D., Grosges, T.: Towards a whole body [18F] FDG positron emission tomography attenuation correction map synthesizing using deep neural networks. J. Comput. Sci. Technol. 21, 29–41 (2021)

    Article  Google Scholar 

  11. Shiri, I., et al.: Direct attenuation correction of brain PET images using only emission data via a deep convolutional encoder-decoder (Deep-DAC). Eur. Radiol. 29(12), 6867–6879 (2019). https://doi.org/10.1007/s00330-019-06229-1

    Article  Google Scholar 

  12. Spencer, B.A., Berg, E., Schmall, J.P., Omidvari, N., Leung, E.K., et al.: Performance evaluation of the uEXPLORER total-body PET/CT scanner based on NEMA NU 2-2018 with additional tests to characterize PET scanners with a long axial field of view. J. Nucl. Med. 62(6), 861–870 (2021)

    Article  Google Scholar 

  13. Tan, H., et al.: Total-body PET/CT: current applications and future perspectives. Am. J. Roentgenol. 215(2), 325–337 (2020)

    Article  Google Scholar 

  14. Wang, T.C., Liu, M.Y., Zhu, J.Y., Tao, A., Kautz, J., Catanzaro, B.: High-resolution image synthesis and semantic manipulation with conditional GANs. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8798–8807 (2018)

    Google Scholar 

  15. Wasserthal, J., Meyer, M., Breit, H., Cyriac, J., Yang, S., Segeroth, M.: TotalSegmentator: robust segmentation of 104 anatomical structures in CT images. arXiv preprint arXiv:2208.05868 (2022)

  16. Zhao, R., et al.: Rethinking dice loss for medical image segmentation. In: 2020 IEEE International Conference on Data Mining (ICDM), pp. 851–860. IEEE (2020)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by The China Postdoctoral Science Foundation (Nos. 2021M703340, BX2021333), National Natural Science Foundation of China (Nos. 62131015, 62203355), Science and Technology Commission of Shanghai Municipality (STCSM) (No. 21010502600), and The Key R &D Program of Guangdong Province, China (No. 2021B0101420006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinggang Shen .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1023 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pan, Y., Liu, F., Jiang, C., Huang, J., Xia, Y., Shen, D. (2023). Revealing Anatomical Structures in PET to Generate CT for Attenuation Correction. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14229. Springer, Cham. https://doi.org/10.1007/978-3-031-43999-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43999-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43998-8

  • Online ISBN: 978-3-031-43999-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics