Skip to main content

CoLa-Diff: Conditional Latent Diffusion Model for Multi-modal MRI Synthesis

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14229))

  • 8166 Accesses

Abstract

MRI synthesis promises to mitigate the challenge of missing MRI modality in clinical practice. Diffusion model has emerged as an effective technique for image synthesis by modelling complex and variable data distributions. However, most diffusion-based MRI synthesis models are using a single modality. As they operate in the original image domain, they are memory-intensive and less feasible for multi-modal synthesis. Moreover, they often fail to preserve the anatomical structure in MRI. Further, balancing the multiple conditions from multi-modal MRI inputs is crucial for multi-modal synthesis. Here, we propose the first diffusion-based multi-modality MRI synthesis model, namely Conditioned Latent Diffusion Model (CoLa-Diff). To reduce memory consumption, we perform the diffusion process in the latent space. We propose a novel network architecture, e.g., similar cooperative filtering, to solve the possible compression and noise in latent space. To better maintain the anatomical structure, brain region masks are introduced as the priors of density distributions to guide diffusion process. We further present auto-weight adaptation to employ multi-modal information effectively. Our experiments demonstrate that CoLa-Diff outperforms other state-of-the-art MRI synthesis methods, promising to serve as an effective tool for multi-modal MRI synthesis.

L. Jiang and Y. Mao—Contribute equally in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://brain-development.org/ixi-dataset/.

References

  1. Bau, D., et al.: Seeing what a GAN cannot generate. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4502–4511 (2019)

    Google Scholar 

  2. Berard, H., Gidel, G., Almahairi, A., Vincent, P., Lacoste-Julien, S.: A closer look at the optimization landscapes of generative adversarial networks. arXiv preprint: arXiv:1906.04848 (2019)

  3. Brooksby, B.A., Dehghani, H., Pogue, B.W., Paulsen, K.D.: Near-infrared (NIR) tomography breast image reconstruction with a priori structural information from MRI: algorithm development for reconstructing heterogeneities. IEEE J. Sel. Top. Quantum Electron. 9(2), 199–209 (2003)

    Article  Google Scholar 

  4. Cherubini, A., Caligiuri, M.E., Péran, P., Sabatini, U., Cosentino, C., Amato, F.: Importance of multimodal MRI in characterizing brain tissue and its potential application for individual age prediction. IEEE J. Biomed. Health Inform. 20(5), 1232–1239 (2016)

    Article  Google Scholar 

  5. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image restoration by sparse 3D transform-domain collaborative filtering. In: Image Processing: Algorithms and Systems VI, vol. 6812, pp. 62–73. SPIE (2008)

    Google Scholar 

  6. Dai, Y., Gieseke, F., Oehmcke, S., Wu, Y., Barnard, K.: Attentional feature fusion. CoRR abs/2009.14082 (2020)

    Google Scholar 

  7. Dalmaz, O., Yurt, M., Çukur, T.: ResViT: residual vision transformers for multimodal medical image synthesis. IEEE Trans. Med. Imaging 41(10), 2598–2614 (2022)

    Article  Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  9. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. In: Advances in Neural Information Processing Systems, vol. 33, pp. 6840–6851 (2020)

    Google Scholar 

  10. Jenkinson, M., Smith, S.: A global optimisation method for robust affine registration of brain images. Med. Image Anal. 5(2), 143–156 (2001)

    Article  Google Scholar 

  11. Kong, Z., Ping, W.: On fast sampling of diffusion probabilistic models. arXiv preprint: arXiv:2106.00132 (2021)

  12. Li, H., et al.: SRDiff: single image super-resolution with diffusion probabilistic models. Neurocomputing 479, 47–59 (2022)

    Article  Google Scholar 

  13. Li, H., et al.: DiamondGAN: unified multi-modal generative adversarial networks for MRI sequences synthesis. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11767, pp. 795–803. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_87

    Chapter  Google Scholar 

  14. Lyu, Q., Wang, G.: Conversion between CT and MRI images using diffusion and score-matching models. arXiv preprint: arXiv:2209.12104 (2022)

  15. Merbach, A.S., Helm, L., Toth, E.: The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging. John Wiley & Sons, Hoboken (2013)

    Book  Google Scholar 

  16. Müller-Franzes, G., et al.: Diffusion probabilistic models beat gans on medical images. arXiv preprint: arXiv:2212.07501 (2022)

  17. Nichol, A.Q., Dhariwal, P.: Improved denoising diffusion probabilistic models. In: International Conference on Machine Learning, pp. 8162–8171. PMLR (2021)

    Google Scholar 

  18. Ourselin, S., Roche, A., Prima, S., Ayache, N.: Block matching: a general framework to improve robustness of rigid registration of medical images. In: Delp, S.L., DiGoia, A.M., Jaramaz, B. (eds.) MICCAI 2000. LNCS, vol. 1935, pp. 557–566. Springer, Heidelberg (2000). https://doi.org/10.1007/978-3-540-40899-4_57

    Chapter  Google Scholar 

  19. Özbey, M., et al.: Unsupervised medical image translation with adversarial diffusion models. arXiv preprint: arXiv:2207.08208 (2022)

  20. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10684–10695 (2022)

    Google Scholar 

  21. Roy, S., Carass, A., Prince, J.: A compressed sensing approach for MR tissue contrast synthesis. In: Székely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol. 6801, pp. 371–383. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22092-0_31

    Chapter  Google Scholar 

  22. Roy, S., Carass, A., Prince, J.L.: Magnetic resonance image example-based contrast synthesis. IEEE Trans. Med. Imaging 32(12), 2348–2363 (2013)

    Article  Google Scholar 

  23. Sharma, A., Hamarneh, G.: Missing MRI pulse sequence synthesis using multi-modal generative adversarial network. IEEE Trans. Med. Imaging 39(4), 1170–1183 (2019)

    Article  Google Scholar 

  24. Shensa, M.J., et al.: The discrete wavelet transform: wedding the a trous and Mallat algorithms. IEEE Trans. Signal Process. 40(10), 2464–2482 (1992)

    Article  MATH  Google Scholar 

  25. Thanh-Tung, H., Tran, T.: Catastrophic forgetting and mode collapse in GANs. In: 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–10. IEEE (2020)

    Google Scholar 

  26. Vlaardingerbroek, M.T., Boer, J.A.: Magnetic Resonance Imaging: Theory and Practice. Springer Science & Business Media, Cham (2013)

    Google Scholar 

  27. Wei, Y., et al.: Multi-modal learning for predicting the genotype of glioma. IEEE Trans. Med. Imaging (2023)

    Google Scholar 

  28. Yu, B., Zhou, L., Wang, L., Shi, Y., Fripp, J., Bourgeat, P.: Ea-GANs: edge-aware generative adversarial networks for cross-modality MR image synthesis. IEEE Trans. Med. Imaging 38(7), 1750–1762 (2019)

    Article  Google Scholar 

  29. Yu, Z., Han, X., Zhang, S., Feng, J., Peng, T., Zhang, X.Y.: MouseGAN++: unsupervised disentanglement and contrastive representation for multiple MRI modalities synthesis and structural segmentation of mouse brain. IEEE Trans. Med. Imaging 42, 1197–1209 (2022)

    Article  Google Scholar 

  30. Yurt, M., Özbey, M., Dar, S.U., Tinaz, B., Oguz, K.K., Çukur, T.: Progressively volumetrized deep generative models for data-efficient contextual learning of MR image recovery. Med. Image Anal. 78, 102429 (2022)

    Article  Google Scholar 

  31. Zhan, B., Li, D., Wu, X., Zhou, J., Wang, Y.: Multi-modal MRI image synthesis via GAN with multi-scale gate mergence. IEEE J. Biomed. Health Inform. 26(1), 17–26 (2022)

    Article  Google Scholar 

  32. Zhang, Y., Brady, M., Smith, S.: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans. Med. Imaging 20(1), 45–57 (2001)

    Article  Google Scholar 

  33. Zhou, T., Fu, H., Chen, G., Shen, J., Shao, L.: Hi-Net: hybrid-fusion network for multi-modal MR image synthesis. IEEE Trans. Med. Imaging 39(9), 2772–2781 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jiang, L., Mao, Y., Wang, X., Chen, X., Li, C. (2023). CoLa-Diff: Conditional Latent Diffusion Model for Multi-modal MRI Synthesis. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14229. Springer, Cham. https://doi.org/10.1007/978-3-031-43999-5_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43999-5_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43998-8

  • Online ISBN: 978-3-031-43999-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics