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Abstract. Statistical shape models (SSMs) are an established way to
represent the anatomy of a population with various clinically relevant ap-
plications. However, they typically require domain expertise, and labor-
intensive landmark annotations to construct. We address these shortcom-
ings by proposing an unsupervised method that leverages deep geomet-
ric features and functional correspondences to simultaneously learn local
and global shape structures across population anatomies. Our pipeline
significantly improves unsupervised correspondence estimation for SSMs
compared to baseline methods, even on highly irregular surface topolo-
gies. We demonstrate this for two different anatomical structures: the
thyroid and a multi-chamber heart dataset. Furthermore, our method is
robust enough to learn from noisy neural network predictions, potentially
enabling scaling SSMs to larger patient populations without manual seg-
mentation annotation. The code is publically available at:
https://github.com/alexanderbaumann99/S3M

Keywords: Statistical Shape Modeling, Unsupervised Correspondence
Estimation, Geometric Deep Learning

1 Introduction

Statistical shape models (SSMs) are a powerful tool to characterize anatomical
variations across a population. They have been widely used in medical image
analysis and computational anatomy to represent organ structures, with numer-
ous clinically relevant applications such as clustering, classification, and shape
regression [21,7,2]. SSMs are generally represented by point-wise correspondences
between shapes [13,4], or deformation fields to a pre-defined template [14,28].
Despite the existence of implicit models [2], abstracting shape correspondences
in the form of linear point distribution models (PDM) constitutes an appealing
and interpretable way to represent shape distributions [3]. Furthermore, many
implicit models still rely on correspondence annotations during training [7,2].

Creating SSMs is cumbersome and intricate, as significant manual human
annotation is necessary. Domain experts typically first segment images in 3D.
The labeled 3D organ surfaces must then be aligned and brought into corre-
spondence, typically achieved through deformable image registration methods
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using manual landmark annotations [6]. This is labor-intensive and error-prone,
potentially inducing bias into downstream SSMs and applications [39].

Unsupervised methods have been proposed to estimate correspondences for
SSMs [11,24,4]. However, they typically require precisely segmented and smooth
surfaces to generate accurate inter-organ correspondences. ShapeWorks has been
established to produce high-quality correspondences on several organs such as
femurs or left atria [1,7,3]. However, as domain experts carefully curate most
medical datasets, the robustness of such methods has not yet been thoroughly
evaluated concerning label noise and segmentation inaccuracies. The main ob-
stacles that prevent scaling SSMs to larger patient populations are unsupervised
correspondence methods that can handle topological variations in noisy annota-
tions, such as those produced by inexperienced annotators or predictions from
deep neural networks. Robust methods to deal with these obstacles are required.

To address these challenges, we propose S3M, which leverages unsupervised
deep geometric features while incorporating a global shape structure. Geometric
Deep Learning (GDL) provides techniques to process 3D shapes and geometries,
which are robust to noise, 3D rotations, and global deformations. We utilize
graph neural networks (GNN) and functional mappings to establish dense surface
correspondences of samples without supervision. This approach has significant
clinical implications as it enables automatically representing anatomical shapes
across large patient populations without requiring manual expert landmark an-
notations. We demonstrate that our proposed method creates objectively supe-
rior SSMs from shapes with noisy surface topologies. Moreover, it accurately
corresponds regions of complex anatomies with mesh bifurcations such as the
heart, which could ease the modeling of inter-organ relations [12].

Our contributions can be summarized as follows:

– We propose a novel unsupervised correspondence method for SSM curation
based on geometric deep learning and functional correspondence.

– S3M exhibits superior performance on two challenging anatomies: thyroid
and heart. It generates objectively more suitable SSMs from noisy thyroid
labels and challenging multi-chamber heart reconstructions.

– To pave the way for unsupervised SSM generation in other medical domains,
we open-source the code of our pipeline.

2 Related Work

Point Distribution Models. A population of shapes must be brought into cor-
respondence to construct a PDM. This has been traditionally achieved through
pair-wise registration methods [21,19]. However, pairwise approaches can admit
bias as they neglect the population during correspondence generation [19]. More
recently, group-wise optimization methods such as ShapeWorks [11] have been
adopted as they jointly optimize over a cohort, overcoming such biases. They
demonstrate superior prediction of clinically relevant anatomical variations [19].
Furthermore, generic models that can perform well across various organs are
sought after.
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Fig. 1. Our proposed method for unsupervised SSM curation. (a) We use a Siamese
GNN as shape descriptor and project the extracted features onto the LBO eigenfunc-
tions ψ to obtain spectral representations. (b) From these, we optimize a functional
mapping between pairs of shapes with an unsupervised loss. Gradients are backpropa-
gated to the geometric descriptors. (c) During inference, the dense correspondences are
estimated between pairs of shapes based on the learned population parameters, which
are then used to construct an SSM.

Graph Neural Networks (GNNs) have been used to enable structural feature
extraction through message passing. They constitute a powerful tool to process
3D data and extract geometric features [38,32,33] which can be useful for disease
prediction [23,30]. Other medical applications involve brain cortex mesh recon-
struction [8] and 3D organ-at-risk (ORA) segmentation [22]. We use GNNs for
deformable 3D organ shapes and learn to estimate dense correspondences in the
presence of noise and anatomical variations.

Functional Correspondence. Functional maps abstract the notion of point-
to-point correspondences by corresponding arbitrary functions, such as texture
or curvature, across shapes. They are extensively used to estimate dense corre-
spondences across deformable shapes [29] and can be incorporated into learning
frameworks [26,17]. These methods are typically evaluated on synthetic meshes
with dense annotations and limited variable surface topology. In contrast, med-
ical shapes exhibit higher variability, requiring robust surface representation for
reliable correspondence matching. More recently, unsupervised functional cor-
respondence models have been proposed [31,10]. These methods demonstrate
strong performance on synthetic data without manual correspondence annota-
tions. They extract features from the surface geometry using hand-crafted de-
scriptors such as SHOT [36], wave-kernel signatures (WKS) [5] or heat-kernel
signatures (HKS) [9]. The extracted features are then typically refined and pro-
jected onto the Laplace-Beltrami Operator (LBO) eigenfunctions [29]. µMatch
[24] recently leveraged such an unsupervised approach in the medical domain.
They employ handcrafted features to extract representations from shapes with
a relatively smooth surface topology; however, they fail for shapes with high
degrees of surface noise or label inconsistencies. To scale SSM curation to larger
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datasets encompassing population variance, our method must be robust to a
more variable and complex surface topology.

3 Method

In the following, we propose a method to establish an SSM as a Point Distribu-
tion Model (PDM), illustrated in Figure 1. Robust local features from the surface
mesh are extracted using GNNs. These features are then projected onto the trun-
cated eigenspace of the Laplace-Beltrami Operator using m = 20 eigenfunctions
[29]. We perform post-processing with a Product Manifold Filter (PMF) [37] to
obtain bijective correspondences for SSM generation. The shape model is sub-
sequently created by aggregating correspondences across a dataset of predicted
correspondences using the eigendecomposition of the covariance matrix.
Geometric Feature Description. Handcrafted descriptors [36,5,9] are unable
to represent the complex surface topology of medical data adequately. To cope
with surface artifacts and irregular morphologies, we use a graph-based descrip-
tor [32]. We first extract a surface mesh from a 3D volumetric grid using marching
cubes [27]. Graph nodes are defined as the mesh’s vertices; edges are obtained
using a k-nearest neighbor search with k = 10. Node features are given by spa-
tial xyz-coordinates. The graph is fed into three topology adaptive layers [18]
using graph convolutions with a specific number of hops to define the number of
nodes a message is passed to. Increasing the number of hops (we use 1, 2, 3 hops
per layer, respectively) increases the receptive field, incorporating features from
more distant nodes. Finally, features pass a linear layer before being projected
onto the Laplace-Beltrami eigenfunctions.
Deformable Correspondence Estimation. PDMs require correspondences
between samples to model the statistical distribution of the organ. Inspired by
methods for geometric shape correspondence, we propose to estimate a functional
mapping T to correspond high-level semantics from two input shapes, Xi and
Xj . The LBO extends the Laplace operator to Riemannian manifolds, capturing
intrinsic characteristics of the shape independent of its position and orientation
in Euclidean space. It can be efficiently computed on a surface mesh using, for
example, the cotangent weight discretization scheme [15]. This results in a matrix
representation of the LBO from which one can then calculate the associated
eigenfunctions ψi ∈ Rn×m for a shape Xi ∈ Rn×3. Given a feature vector
Di extracted from a surface mesh of shape Xi and a neural network Tϕ, we
can approximate a functional mapping between shapes by solving the following
optimization problem:

min
ϕ

∑

(Xi,Xj)

L(Cij , Cji) where Cij = argmin
C

∥CATϕ(Di) −ATϕ(Dj)∥ (1)

Here, ATϕ(Di) ∈ Rm×m denotes the transformed descriptor, written in the basis
of the LBO eigenfunctions of shape Xi and Cij ∈ Rm×m represents the optimal
functional mapping from the descriptor space of Xi to the one of Xj . Inspired
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Fig. 2. PDM results from the proposed method S3M on the thyroid dataset [25]. The
top row depicts the PDM generated from manual annotations and the bottom row from
network pseudo-labels. From left to right, we depict -3
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λ1, with λi the eigenmode corresponding to the i-th largest eigenvalue.

Similar colors indicate corresponding regions predicted by the model.

by existing works on shape correspondence [10,31,34], our loss function enforces
four separate characteristics on the learned functional mapping, including bijec-
tivity, orthogonality, and isometric properties. We refer to the supplementary
materials for the complete definition. Notably, none of these losses uses ground
truth correspondences, making the entire process unsupervised.

Training and Inference. During training, two shapes are sampled from the
dataset, and the pipeline is optimized with Equation 1. We increase model ro-
bustness by augmenting with rotations and small surface deformations. The
point cloud is sub-sampled in each training iteration using farthest point sam-
pling with random initialization. During inference, our model predicts pairwise
correspondences. To accumulate these over an entire dataset of N shapes, we
choose a template shape XT = argminXi

∑N
j=0 1i ̸=jL (Cij , Cji) as the instance

with the lowest average loss to all other shapes in the dataset. As in [29], we
extract point-to-point correspondences between the template XT and another
shape Xi by matching the transformed LBO eigenfunctions of Xi, namely CiTψi,
with the LBO eigenfunctions of the template ψT using nearest neighbors. As
PDMs require bijective correspondences, we subsequently post-process the re-
sults with PMF [37].

Statistical Shape Modeling. We use the PDM [13] as the underlying method
of the shape model. It takes input points of the form X ∈ RN×d, where N , d are
the number of shape samples and coordinates per shape, respectively. It returns
a multi-variate normal distribution. In our case, d = 3n given each shape has
n points. We calculate the mean shape X̄ and the empirical covariance matrix
S = cov(X) over the N samples [13]. Since S has rank N − 1, it has N − 1 real
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(b) Shapeworks (d) SURFMNet (e) Ours(c) µMatch(a) Dataset Sample

Fig. 3. Qualitative Analysis of Whole-Heart SSMs. A sample from the heart
dataset (a). Composition 1 (right ventricle) is denoted in red. Composition 2 (both
ventricles and atria) combines red and green regions. Composition 3 additionally in-
corporates the vessels, denoted in blue The predicted SSM mean shapes for composition
3 are portrayed for ShapeWorks (b), µMatch (c), SURFMNet (d), and S3M (e).

eigenvectors vj with eigenvalues λj . If we consider the sum

s = X̄ +

N−1∑

j=1

αjλjvj , αj ∼ N (0, 1) (2)

then s ∼ N
(
X̄, S

)
, which is the desired distribution of the model. For the

above, the points must be in correspondence across the samples. We thus use
the correspondences generated in section 3 to construct the PDM.

4 Experiments

All experiments are carried out using two publicly available datasets: thyroid
ultrasound scans and heart MRI acquisitions. Our model is implemented in Py-
Torch 1.12 using CUDA 11.6. Training takes between 2.5−3 hours on an Nvidia
A40 GPU and inference about 0.71 seconds for a pair of shapes. We use publically
available implementations for all baseline methods.
Thyroid Dataset (SegThy) [25]. The dataset comprises 3D freehand US
scans of healthy thyroids from 32 volunteers aged 24-39. For each volunteer, three
physicians acquired three scans each. Ultrasound scans generally exhibit noise
induced by physical properties such as phase aberrations and attenuation. This
leads to label inconsistencies or topological irregularities that pose a challenge
for shape modeling (see Figure 2). US sweeps were compounded to a 3D grid of
resolution 0.12 × 0.12 × 0.12mm3. A single scan from each of the 16 volunteers
was manually annotated by experts (ground truth) and used to train QuickNAT
[25]. The remaining scans were pseudo-labeled through QuickNAT segmentation
predictions exhibiting moderate degrees of noise and inaccuracies (dice score of
0.94 [25]). We divide the dataset into manual and pseudo-label predictions and
evaluate them separately. The pseudo-label experiment evaluates the model’s
performance under topological noise and inaccuracies and is limited to 100 scans
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due to ShapeWorks memory constraints [20]. We extract a surface mesh for each
scan using marching cubes and subsample the meshes to 5000 vertices.
Heart Dataset [35]. The data constitutes 30 MRI scans from a single cardiac
phase of the heart. Each image has a voxel resolution of 1.25×1.25×2.7mm3. Seg-
mentation is carried out using an automated method, with subsequent manual
corrections by domain experts. Labels are provided for: the right/left ventricle,
right/left atrium, aorta, and pulmonary artery. We evaluate the capability of the
models to reconstruct complex organs using three hierarchical compositions of
the heart chambers. Composition 1 consists of the right ventricle, Composition
2 of the left and right atrium and ventricle, and Composition 3 of the whole
heart, including the aorta and pulmonary artery.

Table 1. SSM quality metrics for the Thyroid dataset [25]

Metrics Ground-Truth Segmentation Network Pseudo-Labels

Generality [mm] ↓ Specificity [mm] ↓ Generality [mm] ↓ Specificity [mm] ↓

SURFMNet 2.20 ± 0.20 3.20 ± 0.29 - -

µMatch 1.92 ± 0.07 2.81 ± 0.18 1.90 ± 0.08 2.84 ± 0.10

Shapeworks 1.94 ± 0.27 1.81 ± 0.06 1.60 ± 0.04 1.75 ± 0.07

S3M (Ours) 1.25 ± 0.11 1.59 ± 0.06 0.95 ± 0.07 1.84 ± 0.08

SSM Evaluation. We compare Shapeworks [11], µMatch [24] and SURFMNet
[31], with S3M. A four-fold cross-validation is employed. SURFMNet, µMatch,
and S3M are trained on the training folds and correspondences are predicted on
the training and validation set. Since the particle-based optimization of Shape-
works does not generalize to unseen data, it uses all folds for correspondence
estimation. The SSM is built using correspondences from the training set, and
evaluated with respect to two standardized metrics: generality and specificity
[16]. For generality, we measure how well the SSM can represent unseen in-
stances from the fourth fold through the Chamfer distance between the original
shape and its SSM reconstruction. Specificity indicates how well random samples
from the SSM represent the training data. We sample from the PDM 1000 times
and calculate each sample’s minimum Chamfer distance to the training shapes.
Generalization and specificity are reported in mm. Numbers in bold indicate
statistically significant results by a one-sided t-test (p < 0.05).

5 Results & Discussion

Experiment 1: Thyroid SSM. Table 1 depicts the performance for all meth-
ods on the thyroid shapes. SURFMNet results for the thyroid pseudo-labels are
omitted, as the method did not converge. Consistent trends can be observed
across all methods for both sets of thyroid labels. The two existing functional
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map-based methods were outperformed by Shapeworks, while the proposed S3M
exceeded the latter’s scores. The descriptor is the most significant difference be-
tween the three learned functional map methods. Hand-crafted shape descriptors
like SHOT and a simple fully-connected residual network architecture do not ad-
equately represent thyroids’ noisy and heterogeneous shapes.

Our proposed method significantly outperformed Shapeworks in all metrics
except the specificity of pseudo-labeled thyroids, where the results are not statis-
tically significant. This was despite the advantage of optimizing correspondences
across all shapes in training and validation. S3M can better cope with topologi-
cal noise and generalizes to unseen samples, demonstrating potential in scaling
SSM generation to larger datasets. Furthermore, it does not suffer from increas-
ing memory requirements with the number of samples.

Table 2. Whole Heart Statistical Shape Modeling

Metrics Composition 1 Composition 2 Composition 3

Generality [mm] ↓ Specificity [mm] ↓ Generality [mm] ↓ Specificity [mm] ↓ Generality [mm] ↓ Specificity [mm] ↓

SURFMNet 1.10± 0.39 1.79± 0.87 1.37± 0.16 2.00± 0.30 1.71± 0.17 2.54± 0.36

µMatch 3.39± 0.26 4.65± 0.16 2.82± 0.14 4.81± 0.41 3.30± 0.07 5.80± 0.08

ShapeWorks 0.89± 0.08 1.40± 0.04 2.57± 0.17 3.60± 0.06 3.07± 0.19 4.99± 0.22

S3M (Ours) 0.85± 0.07 1.30± 0.01 1.30± 0.13 1.72± 0.05 1.63± 0.17 2.14± 0.07

Experiment 2: Whole Heart SSM. Table 2 depicts the results of the differ-
ent models on the three heart chamber compositions as previously defined. For
the single-organ right atrium (composition 1), our proposed method fares com-
parably to ShapeWorks. For the more complex compositions 2 and 3, we observe
larger increases in generalization and specificity for Shapeworks. µMatch fails to
create a convincing SSM for any heart composition. Interestingly, SURFMNet
can represent the more complex compositions 2 and 3 better than ShapeWorks,
showing the strength of functional maps at representing complex high-level struc-
tures. S3M still exceeded the performance of SURFMNet, possibly due to the
graph descriptor being better able to represent the surface topology.

From the qualitative results in Figure 3, it becomes more apparent that
ShapeWorks does not generate an adequate SSM for the more complex compo-
sitions. This further supports our proposed method’s ability to learn correspon-
dences for intricate and complex surface topologies, even consisting of meshes
with bifurcations. The flexibility of our surface representation enables unsuper-
vised correspondence estimation from multiple hierarchical sub-shapes, which is
invaluable in multi-organ modeling such as for the heart [6,12].
Experiment 3: Thyroid Pseudo-label Generalization

To further highlight the proposed methods’ robustness to network-generated
segmentation labels, we additionally measure the reconstruction ability of SSMs
created from pseudo-labels on manually annotated thyroid labels under the
Chamfer distance (Ours: 1.05± 0.10mm, Shapeworks: 1.84± 0.40mm). Notably,
the proposed PDM on pseudo-labels generalizes better than the SSM built on
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few manual labels (1.25± 0.11mm; see Table 1), suggesting that more data can
improve the SSM even if the labels are inaccurate. This is further supported
by differences in shape (suppl. fig. 1); the SSM’s mean shape generated from
pseudo-labels approximates the mean shapes on GT labels (and thus, the true
organ shape) more closely.

6 Conclusion

We present an unsupervised approach for learning correspondences between
shapes that exhibit noisy and irregular surface topologies. Our method leverages
the strengths of geometric feature extractors to learn the intricacies of organ sur-
faces, as well as high-level functional bases of the Laplace-Beltrami operator to
capture more extensive organ semantics. S3M outperforms existing methods on
both manual labels, and label predictions from a network, demonstrating the
potential to scale existing SSM pipelines to datasets that encompass more sub-
stantial population variance without additional annotation burden. Finally, we
show that our model has the potential to learn correspondences between complex
multi-organ shape hierarchies such as chambers of the heart, which would ease
the manual burden of SSM curation for structures that currently still require
meticulous manual landmark annotations.
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1 Correspondence Loss

The functional loss consists of four components.

min
ϕ

∑

(Xi,Xj)

L(Cij , Cji) where Cij = argmin
C

∥CATϕ(Di) −ATϕ(Dj)∥ (1)

L = Lbij + Lorth + Liso + Lpoint (2)

We first require the functional maps to be approximately bijective by regu-
larizing their composition with the identity operator:

Lbij(Cij , Cji) = ∥CijCji − I∥F + ∥CjiCij − I∥F (3)

Furthermore, we enforce their orthogonality to maintain their local area
preservation characteristics with Lorth [2], and a further regularization to ensure
commutation with the LBO to maintain isometric properties on the surfaces
with Liso:

Lorth(Cij , Cji) = ∥CT
ijCji − I∥F + ∥CT

jiCij − I∥F (4)

Liso(Cij , Cji) = ∥CijΛi − ΛjCij∥F + ∥CjiΛj − ΛiCji∥F (5)

where Λi is the diagonal matrix of the LBO eigenvalues of shape Xi and ∥·∥F
denotes the frobenius norm. Finally, in addition to regularization through these
“soft” correspondences defined by the functional map, we further regularize
“hard” point-to-point correspondences based on pointwise descriptors matched
using the functional maps in the truncated LBO bases of each shape with Lpoint

[1,3].
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Fig. 1. Qualitative analysis of thyroid SSM mean shapes. Mean shapes on manually
labeled shapes are depicted on the left, and on pseudo-labels from the QuickNat are
on the right.

Fig. 2. Qualitative analysis of SSM mean shapes on Composition 1 (right ventricle) of
heart dataset.

Fig. 3. Qualitative analysis of SSM mean shapes on Composition 2 of heart dataset.


