Skip to main content

S3M: Scalable Statistical Shape Modeling Through Unsupervised Correspondences

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

Statistical shape models (SSMs) are an established way to represent the anatomy of a population with various clinically relevant applications. However, they typically require domain expertise, and labor-intensive landmark annotations to construct. We address these shortcomings by proposing an unsupervised method that leverages deep geometric features and functional correspondences to simultaneously learn local and global shape structures across population anatomies. Our pipeline significantly improves unsupervised correspondence estimation for SSMs compared to baseline methods, even on highly irregular surface topologies. We demonstrate this for two different anatomical structures: the thyroid and a multi-chamber heart dataset. Furthermore, our method is robust enough to learn from noisy neural network predictions, potentially enabling scaling SSMs to larger patient populations without manual segmentation annotation. The code is publically available at:

https://github.com/alexanderbaumann99/S3M

Lennart Bastian and Alexander Baumann contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams, J., Bhalodia, R., Elhabian, S.: Uncertain-DeepSSM: from images to probabilistic shape models. In: Reuter, M., Wachinger, C., Lombaert, H., Paniagua, B., Goksel, O., Rekik, I. (eds.) ShapeMI 2020. LNCS, vol. 12474, pp. 57–72. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61056-2_5

    Chapter  Google Scholar 

  2. Adams, J., Elhabian, S.: From images to probabilistic anatomical shapes: a deep variational bottleneck approach. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13432, pp. 474–484. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-16434-7_46

    Chapter  Google Scholar 

  3. Adams, J., Khan, N., Morris, A., Elhabian, S.: Spatiotemporal cardiac statistical shape modeling: a data-driven approach. In: Camara, O., et al. (eds.) STACOM MICCAI 2022, vol. 13593, pp. 143–156. Springer, Heidelberg (2023). https://doi.org/10.1007/978-3-031-23443-9_14

    Chapter  Google Scholar 

  4. Agrawal, P., Whitaker, R.T., Elhabian, S.Y.: Learning deep features for shape correspondence with domain invariance. arXiv preprint arXiv:2102.10493 (2021)

  5. Aubry, M., Schlickewei, U., Cremers, D.: The wave kernel signature: a quantum mechanical approach to shape analysis. In: ICCV Workshops (2011)

    Google Scholar 

  6. Banerjee, A., Zacur, E., Choudhury, R.P., Grau, V.: Automated 3d whole-heart mesh reconstruction from 2d cine mr slices using statistical shape model. In: 2022 IEEE EMBS, pp. 1702–1706. IEEE (2022)

    Google Scholar 

  7. Bhalodia, R., Elhabian, S., Adams, J., Tao, W., Kavan, L., Whitaker, R.: Deepssm: a blueprint for image-to-shape deep learning models. arXiv preprint arXiv:2110.07152 (2021)

  8. Bongratz, F., Rickmann, A.M., Pölsterl, S., Wachinger, C.: Vox2cortex: fast explicit reconstruction of cortical surfaces from 3d MRI scans with geometric deep neural networks. In: CVPR 2022, pp. 20773–20783 (2022)

    Google Scholar 

  9. Bronstein, M.M., Kokkinos, I.: Scale-invariant heat kernel signatures for non-rigid shape recognition. In: CVPR 2010, pp. 1704–1711. IEEE (2010)

    Google Scholar 

  10. Cao, D., Bernard, F.: Unsupervised deep multi-shape matching. In: Avidan, S., Brostow, G., Cisse, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13663, pp. 55–71. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-20062-5_4

    Chapter  Google Scholar 

  11. Cates, J., Elhabian, S., Whitaker, R.: ShapeWorks. In: Statistical Shape and Deformation Analysis, pp. 257–298. Elsevier (2017)

    Google Scholar 

  12. Cerrolaza, J.J., et al.: Computational anatomy for multi-organ analysis in medical imaging: a review. Med. Image Anal. 56, 44–67 (2019)

    Article  Google Scholar 

  13. Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Training models of shape from sets of examples. In: BMVC92 (1992)

    Google Scholar 

  14. Cootes, T.F., Twining, C.J., Babalola, K.O., Taylor, C.J.: Diffeomorphic statistical shape models. Image Vision Comput. 26(3), 326–332 (2008)

    Article  Google Scholar 

  15. Crane, K.: Discrete differential geometry: an applied introduction. Not. AMS Commun. 7, 1153–1159 (2018)

    Google Scholar 

  16. Davies, R.H.: Learning Shape: Optimal Models for Analysing Natural Variability. The University of Manchester (United Kingdom) (2002)

    Google Scholar 

  17. Donati, N., Sharma, A., Ovsjanikov, M.: Deep geometric functional maps: robust feature learning for shape correspondence. In: CVPR 2020, pp. 8592–8601 (2020)

    Google Scholar 

  18. Du, J., Zhang, S., Wu, G., Moura, J.M., Kar, S.: Topology adaptive graph convolutional networks. arXiv preprint arXiv:1710.10370 (2017)

  19. Goparaju, A., Iyer, K., Bone, A., Hu, N., Henninger, H.B., et al.: Benchmarking off-the-shelf statistical shape modeling tools in clinical applications. Med. Image Anal. 76, 102271 (2022)

    Article  Google Scholar 

  20. Gutiérrez-Becker, B., Wachinger, C.: Learning a conditional generative model for anatomical shape analysis. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 505–516. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_39

    Chapter  Google Scholar 

  21. Heimann, T., Meinzer, H.P.: Statistical shape models for 3D medical image segmentation: a review. Med. Image Anal. 13(4), 543–563 (2009)

    Article  Google Scholar 

  22. Henderson, E.G., Green, A.F., van Herk, M., Vasquez Osorio, E.M.: Automatic identification of segmentation errors for radiotherapy using geometric learning. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13435, pp. 319–329. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-16443-9_31

    Chapter  Google Scholar 

  23. Kazi, A., et al.: InceptionGCN: receptive field aware graph convolutional network for disease prediction. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 73–85. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_6

    Chapter  Google Scholar 

  24. Klatzow, J., Dalmasso, G., Martínez-Abadías, N., Sharpe, J., Uhlmann, V.: \(\upmu \)Match: 3D shape correspondence for biological image data, vol. 4 (2022)

    Google Scholar 

  25. Krönke, M., Eilers, C., Dimova, D., Köhler, M., Buschner, G., et al.: Tracked 3d ultrasound and deep neural network-based thyroid segmentation reduce interobserver variability in thyroid volumetry. Plos One 17(7) (2022)

    Google Scholar 

  26. Litany, O., Remez, T., Rodola, E., Bronstein, A., Bronstein, M.: Deep functional maps: structured prediction for dense shape correspondence. In: ICCV, pp. 5659–5667 (2017)

    Google Scholar 

  27. Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3d surface construction algorithm. ACM Siggraph Comput. Graph. 21(4), 163–169 (1987)

    Article  Google Scholar 

  28. Lüdke, D., Amiranashvili, T., Ambellan, F., Ezhov, I., Menze, B.H., Zachow, S.: Landmark-free statistical shape modeling via neural flow deformations. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13432, pp. 453–463. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-16434-7_44

    Chapter  Google Scholar 

  29. Ovsjanikov, M., Ben-Chen, M., Solomon, J., Butscher, A., Guibas, L.: Functional maps: a flexible representation of maps between shapes. ACM ToG 31(4) (2012)

    Google Scholar 

  30. Parisot, S., et al.: Spectral graph convolutions for population-based disease prediction. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 177–185. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_21

    Chapter  Google Scholar 

  31. Roufosse, J.M., Sharma, A., Ovsjanikov, M.: Unsupervised deep learning for structured shape matching. In: ICCV (2019)

    Google Scholar 

  32. Saleh, M., Dehghani, S., Busam, B., Navab, N., Tombari, F.: Graphite: graph-induced feature extraction for point cloud registration. In: 2020 3DV, pp. 241–251. IEEE (2020)

    Google Scholar 

  33. Saleh, M., Wu, S.C., Cosmo, L., Navab, N., Busam, B., Tombari, F.: Bending graphs: hierarchical shape matching using gated optimal transport. In: CVPR 2022, pp. 11757–11767 (2022)

    Google Scholar 

  34. Sharma, A., Ovsjanikov, M.: Weakly supervised deep functional maps for shape matching. NeurIPS 33, 19264–19275 (2020)

    Google Scholar 

  35. Tobon-Gomez, C., et al.: Benchmark for algorithms segmenting the left atrium from 3d ct and mri datasets. IEEE Trans. Med. Imaging 34(7), 1460–1473 (2015)

    Article  Google Scholar 

  36. Tombari, F., Salti, S., Di Stefano, L.: Unique signatures of histograms for local surface description. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6313, pp. 356–369. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15558-1_26

    Chapter  Google Scholar 

  37. Vestner, M., Litman, R., Rodola, E., Bronstein, A., Cremers, D.: Product manifold filter: non-rigid shape correspondence via kernel density estimation in the product space. In: CVPR (2017)

    Google Scholar 

  38. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic graph cnn for learning on point clouds. Acm ToG 38(5), 1–12 (2019)

    Article  Google Scholar 

  39. Zhang, L., et al.: Disentangling human error from ground truth in segmentation of medical images. NeurIPS 33, 15750–15762 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lennart Bastian .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 886 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bastian, L. et al. (2023). S3M: Scalable Statistical Shape Modeling Through Unsupervised Correspondences. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14229. Springer, Cham. https://doi.org/10.1007/978-3-031-43999-5_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43999-5_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43998-8

  • Online ISBN: 978-3-031-43999-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics