Skip to main content

Self-supervised MRI Reconstruction with Unrolled Diffusion Models

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14229))

  • 7212 Accesses

Abstract

Magnetic Resonance Imaging (MRI) produces excellent soft tissue contrast, albeit it is an inherently slow imaging modality. Promising deep learning methods have recently been proposed to reconstruct accelerated MRI scans. However, existing methods still suffer from various limitations regarding image fidelity, contextual sensitivity, and reliance on fully-sampled acquisitions for model training. To comprehensively address these limitations, we propose a novel self-supervised deep reconstruction model, named Self-Supervised Diffusion Reconstruction (SSDiffRecon). SSDiffRecon expresses a conditional diffusion process as an unrolled architecture that interleaves cross-attention transformers for reverse diffusion steps with data-consistency blocks for physics-driven processing. Unlike recent diffusion methods for MRI reconstruction, a self-supervision strategy is adopted to train SSDiffRecon using only undersampled k-space data. Comprehensive experiments on public brain MR datasets demonstrates the superiority of SSDiffRecon against state-of-the-art supervised, and self-supervised baselines in terms of reconstruction speed and quality. Implementation will be available at https://github.com/yilmazkorkmaz1/SSDiffRecon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aggarwal, H.K., Mani, M.P., Jacob, M.: MoDL: model-based deep learning architecture for inverse problems. IEEE Trans. Med. Imaging 38(2), 394–405 (2019)

    Article  Google Scholar 

  2. Bakker, T., Muckley, M., Romero-Soriano, A., Drozdzal, M., Pineda, L.: On learning adaptive acquisition policies for undersampled multi-coil MRI reconstruction. arXiv preprint arXiv:2203.16392 (2022)

  3. Cao, C., Cui, Z.X., Liu, S., Liang, D., Zhu, Y.: High-frequency space diffusion models for accelerated mri. arXiv preprint arXiv:2208.05481 (2022)

  4. Cao, Y., Wang, L., Zhang, J., Xia, H., Yang, F., Zhu, Y.: Accelerating multi-echo MRI in k-space with complex-valued diffusion probabilistic model. In: 2022 16th IEEE International Conference on Signal Processing (ICSP), vol. 1, pp. 479–484. IEEE (2022)

    Google Scholar 

  5. Cui, Z.X., et al.: Self-score: Self-supervised learning on score-based models for MRI reconstruction. arXiv preprint arXiv:2209.00835 (2022)

  6. Dar, S.U., et al.: Adaptive diffusion priors for accelerated MRI reconstruction. arXiv preprint arXiv:2207.05876 (2022)

  7. Dar, S.U., Yurt, M., Shahdloo, M., Ildız, M.E., Tınaz, B., Çukur, T.: Prior-guided image reconstruction for accelerated multi-contrast MRI via generative adversarial networks. IEEE J. Sel. Top. Signal Process. 14(6), 1072–1087 (2020)

    Article  Google Scholar 

  8. Haldar, J.P., Hernando, D., Liang, Z.P.: Compressed-sensing MRI with random encoding. IEEE Trans. Med. Imaging 30(4), 893–903 (2010)

    Article  Google Scholar 

  9. Hammernik, K., Pan, J., Rueckert, D., Küstner, T.: Motion-guided physics-based learning for cardiac MRI reconstruction. In: 2021 55th Asilomar Conference on Signals, Systems, and Computers, pp. 900–907. IEEE (2021)

    Google Scholar 

  10. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Adv. Neural. Inf. Process. Syst. 33, 6840–6851 (2020)

    Google Scholar 

  11. Huang, W., et al.: Rethinking the optimization process for self-supervised model-driven MRI reconstruction. arXiv preprint arXiv:2203.09724 (2022)

  12. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of StyleGAN. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8107–8116 (2020)

    Google Scholar 

  13. Knoll, F., Hammernik, K., Kobler, E., Pock, T., Recht, M.P., Sodickson, D.K.: Assessment of the generalization of learned image reconstruction and the potential for transfer learning. Magn. Reson. Med. 81(1), 116–128 (2019)

    Article  Google Scholar 

  14. Knoll, F., et al.: fastMRI: a publicly available raw k-space and DICOM dataset of knee images for accelerated MR image reconstruction using machine learning. Radiol. Artif. Intell. 2(1), e190007 (2020)

    Article  Google Scholar 

  15. Kwon, K., Kim, D., Park, H.: A parallel MR imaging method using multilayer perceptron. Med. Phys. 44(12), 6209–6224 (2017). https://doi.org/10.1002/mp.12600

    Article  Google Scholar 

  16. Lee, D., Yoo, J., Tak, S., Ye, J.C.: Deep residual learning for accelerated MRI using magnitude and phase networks. IEEE Trans. Biomed. Eng. 65(9), 1985–1995 (2018)

    Article  Google Scholar 

  17. Lustig, M., Donoho, D., Pauly, J.M.: Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn. Resonan. Med. Off. J. Int. Soc. Magn. Resonan. Med. 58(6), 1182–1195 (2007)

    Article  Google Scholar 

  18. Mardani, M., et al.: Deep generative adversarial neural networks for compressive sensing MRI. IEEE Trans. Med. Imaging 38(1), 167–179 (2019)

    Article  Google Scholar 

  19. Nichol, A.Q., Dhariwal, P.: Improved denoising diffusion probabilistic models. In: International Conference on Machine Learning, pp. 8162–8171. PMLR (2021)

    Google Scholar 

  20. Peng, C., Guo, P., Zhou, S.K., Patel, V.M., Chellappa, R.: Towards performant and reliable undersampled MR reconstruction via diffusion model sampling. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention. MICCAI 2022. LNCS, vol. 13436, pp. 623–633. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16446-0_59

  21. Qin, C., Schlemper, J., Caballero, J., Price, A.N., Hajnal, J.V., Rueckert, D.: Convolutional recurrent neural networks for dynamic MR image reconstruction. IEEE Trans. Med. Imaging 38(1), 280–290 (2018)

    Article  Google Scholar 

  22. Schlemper, J., Caballero, J., Hajnal, J.V., Price, A., Rueckert, D.: A deep cascade of convolutional neural networks for MR image reconstruction. In: International Conference on Information Processing in Medical Imaging, pp. 647–658 (2017)

    Google Scholar 

  23. Sriram, A., Zbontar, J., Murrell, T., Zitnick, C.L., Defazio, A., Sodickson, D.K.: GrappaNet: combining parallel imaging with deep learning for multi-coil MRI reconstruction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 14303–14310, June 2020

    Google Scholar 

  24. Wang, S., et al.: Accelerating magnetic resonance imaging via deep learning. In: IEEE 13th International Symposium on Biomedical Imaging (ISBI), pp. 514–517 (2016). https://doi.org/10.1109/ISBI.2016.7493320

  25. Xie, Y., Li, Q.: Measurement-conditioned denoising diffusion probabilistic model for under-sampled medical image reconstruction. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention. MICCAI 2022. LNCS, vol. 13436, pp. pp. 655–664. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16446-0_62

  26. Yaman, B., Hosseini, S.A.H., Moeller, S., Ellermann, J., Uğurbil, K., Akçakaya, M.: Self-supervised learning of physics-guided reconstruction neural networks without fully sampled reference data. Magn. Reson. Med. 84(6), 3172–3191 (2020)

    Article  Google Scholar 

  27. Yu, S., et al.: DAGAN: deep de-aliasing generative adversarial networks for fast compressed sensing MRI reconstruction. IEEE Trans. Med. Imaging 37(6), 1310–1321 (2018)

    Article  Google Scholar 

  28. Zhang, T., Pauly, J.M., Vasanawala, S.S., Lustig, M.: Coil compression for accelerated imaging with cartesian sampling. Magn. Reson. Med. 69(2), 571–582 (2013)

    Article  Google Scholar 

  29. Zhu, B., Liu, J.Z., Rosen, B.R., Rosen, M.S.: Image reconstruction by domain transform manifold learning. Nature 555(7697), 487–492 (2018)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by NIH R01 grant R01CA276221 and TUBITAK 1001 grant 121E488.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yilmaz Korkmaz .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 107 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Korkmaz, Y., Cukur, T., Patel, V.M. (2023). Self-supervised MRI Reconstruction with Unrolled Diffusion Models. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14229. Springer, Cham. https://doi.org/10.1007/978-3-031-43999-5_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43999-5_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43998-8

  • Online ISBN: 978-3-031-43999-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics