Skip to main content

Solving Low-Dose CT Reconstruction via GAN with Local Coherence

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

The Computed Tomography (CT) for diagnosis of lesions in human internal organs is one of the most fundamental topics in medical imaging. Low-dose CT, which offers reduced radiation exposure, is preferred over standard-dose CT, and therefore its reconstruction approaches have been extensively studied. However, current low-dose CT reconstruction techniques mainly rely on model-based methods or deep-learning-based techniques, which often ignore the coherence and smoothness for sequential CT slices. To address this issue, we propose a novel approach using generative adversarial networks (GANs) with enhanced local coherence. The proposed method can capture the local coherence of adjacent images by optical flow, which yields significant improvements in the precision and stability of the constructed images. We evaluate our proposed method on real datasets and the experimental results suggest that it can outperform existing state-of-the-art reconstruction approaches significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    If \(i=1\), \(\mathcal {N}(\mathbf {s_i})=\{\mathbf {s_{2}}\}\); if \(i=n\), \(\mathcal {N}(\mathbf {s_i})=\{\mathbf {s_{n-1}}\}\).

References

  1. Adler, J., Öktem, O.: Learned primal-dual reconstruction. IEEE Trans. Med. Imaging 37(6), 1322–1332 (2018)

    Article  Google Scholar 

  2. Beauchemin, S.S., Barron, J.L.: The computation of optical flow. ACM Comput. Surv. (CSUR) 27(3), 433–466 (1995)

    Article  Google Scholar 

  3. Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20(1), 89–97 (2004)

    MathSciNet  MATH  Google Scholar 

  4. Chen, H., et al.: Low-dose CT via convolutional neural network. Biomed. Opt. Express 8(2), 679–694 (2017)

    Article  Google Scholar 

  5. Chu, M., Xie, Y., Mayer, J., Leal-Taixé, L., Thuerey, N.: Learning temporal coherence via self-supervision for GAN-based video generation. ACM Trans. Graph. (TOG) 39(4), 75-1 (2020)

    Google Scholar 

  6. Ding, Q., Nan, Y., Gao, H., Ji, H.: Deep learning with adaptive hyper-parameters for low-dose CT image reconstruction. IEEE Trans. Comput. Imaging 7, 648–660 (2021)

    Article  MathSciNet  Google Scholar 

  7. Dosovitskiy, A., et al.: Flownet: learning optical flow with convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2758–2766 (2015)

    Google Scholar 

  8. Goodfellow, I.J., et al.: Generative adversarial networks. CoRR abs/1406.2661 (2014). https://arxiv.org/abs/1406.2661

  9. Horn, B.K., Schunck, B.G.: Determining optical flow. Artif. Intell. 17(1–3), 185–203 (1981)

    Article  MATH  Google Scholar 

  10. Jin, K.H., McCann, M.T., Froustey, E., Unser, M.: Deep convolutional neural network for inverse problems in imaging. IEEE Trans. Image Process. 26(9), 4509–4522 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kak, A.C., Slaney, M.: Principles of computerized tomographic imaging. SIAM (2001)

    Google Scholar 

  12. Knoll, F., Bredies, K., Pock, T., Stollberger, R.: Second order total generalized variation (TGV) for MRI. Magn. Reson. Med. 65(2), 480–491 (2011)

    Article  Google Scholar 

  13. Kobler, E., Effland, A., Kunisch, K., Pock, T.: Total deep variation for linear inverse problems. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7549–7558 (2020)

    Google Scholar 

  14. Li, H., Schwab, J., Antholzer, S., Haltmeier, M.: NETT: solving inverse problems with deep neural networks. Inverse Prob. 36(6), 065005 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lin, W.A., et al.: Dudonet: dual domain network for CT metal artifact reduction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10512–10521 (2019)

    Google Scholar 

  16. Liu, H., Lin, Y., Ibragimov, B., Zhang, C.: Low dose 4D-CT super-resolution reconstruction via inter-plane motion estimation based on optical flow. Biomed. Signal Process. Control 62, 102085 (2020)

    Article  Google Scholar 

  17. Lunz, S., Öktem, O., Schönlieb, C.B.: Adversarial regularizers in inverse problems. In: Advances in Neural Information Processing Systems, vol. 31 (2018)

    Google Scholar 

  18. McCann, M.T., Nilchian, M., Stampanoni, M., Unser, M.: Fast 3D reconstruction method for differential phase contrast X-ray CT. Opt. Express 24(13), 14564–14581 (2016)

    Article  Google Scholar 

  19. McCollough, C.: TU-FG-207A-04: overview of the low dose CT grand challenge. Med. Phys. 43(6Part35), 3759–3760 (2016)

    Google Scholar 

  20. Mira, C., Moya-Albor, E., Escalante-Ramírez, B., Olveres, J., Brieva, J., Vallejo, E.: 3D hermite transform optical flow estimation in left ventricle CT sequences. Sensors 20(3), 595 (2020)

    Article  Google Scholar 

  21. Mukherjee, S., Carioni, M., Öktem, O., Schönlieb, C.B.: End-to-end reconstruction meets data-driven regularization for inverse problems. Adv. Neural. Inf. Process. Syst. 34, 21413–21425 (2021)

    Google Scholar 

  22. Patraucean, V., Handa, A., Cipolla, R.: Spatio-temporal video autoencoder with differentiable memory. arXiv preprint arXiv:1511.06309 (2015)

  23. Ramm, A.G., Katsevich, A.I.: The Radon Transform and Local Tomography. CRC Press, Boca Raton (2020)

    Book  MATH  Google Scholar 

  24. Romano, Y., Elad, M., Milanfar, P.: The little engine that could: regularization by denoising (RED). SIAM J. Imag. Sci. 10(4), 1804–1844 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  26. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1–4), 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sori, W.J., Feng, J., Godana, A.W., Liu, S., Gelmecha, D.J.: DFD-Net: lung cancer detection from denoised CT scan image using deep learning. Front. Comp. Sci. 15, 1–13 (2021)

    Google Scholar 

  28. Toft, P.: The radon transform. Theory and Implementation (Ph.D. dissertation), Technical University of Denmark, Copenhagen (1996)

    Google Scholar 

  29. Venkatakrishnan, S.V., Bouman, C.A., Wohlberg, B.: Plug-and-play priors for model based reconstruction. In: 2013 IEEE Global Conference on Signal and Information Processing, pp. 945–948. IEEE (2013)

    Google Scholar 

  30. Wang, C., Shang, K., Zhang, H., Li, Q., Zhou, S.K.: DuDoTrans: dual-domain transformer for sparse-view CT reconstruction. In: Haq, N., Johnson, P., Maier, A., Qin, C., Würfl, T., Yoo, J. (eds.) MLMIR 2022. LNCS, vol. 13587, pp. 84–94. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-17247-2_9

    Chapter  Google Scholar 

  31. Wang, T.C., et al.: Video-to-video synthesis. arXiv preprint arXiv:1808.06601 (2018)

  32. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  33. Weng, N., Yang, Y.H., Pierson, R.: Three-dimensional surface reconstruction using optical flow for medical imaging. IEEE Trans. Med. Imaging 16(5), 630–641 (1997)

    Article  Google Scholar 

  34. Wolterink, J.M., Leiner, T., Viergever, M.A., Išgum, I.: Generative adversarial networks for noise reduction in low-dose CT. IEEE Trans. Med. Imaging 36(12), 2536–2545 (2017)

    Article  Google Scholar 

  35. Xue, T., Wu, J., Bouman, K., Freeman, B.: Visual dynamics: probabilistic future frame synthesis via cross convolutional networks. In: Advances in Neural Information Processing Systems, vol. 29 (2016)

    Google Scholar 

  36. Zhao, B., et al.: Evaluating variability in tumor measurements from same-day repeat CT scans of patients with non-small cell lung cancer. Radiology 252(1), 263–272 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The research of this work was supported in part by National Key R &D program of China through grant 2021YFA1000900, the NSFC throught Grant 62272432, and the Provincial NSF of Anhui through grant 2208085MF163.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hu Ding .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 595 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, W., Ding, H. (2023). Solving Low-Dose CT Reconstruction via GAN with Local Coherence. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14229. Springer, Cham. https://doi.org/10.1007/978-3-031-43999-5_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43999-5_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43998-8

  • Online ISBN: 978-3-031-43999-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics