Skip to main content

CycleSTTN: A Learning-Based Temporal Model for Specular Augmentation in Endoscopy

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

Feature detection and matching is a computer vision problem that underpins different computer assisted techniques in endoscopy, including anatomy and lesion recognition, camera motion estimation, and 3D reconstruction. This problem is made extremely challenging due to the abundant presence of specular reflections. Most of the solutions proposed in the literature are based on filtering or masking out these regions as an additional processing step. There has been little investigation into explicitly learning robustness to such artefacts with single-step end-to-end training. In this paper, we propose an augmentation technique (CycleSTTN) that adds temporally consistent and realistic specularities to endoscopic videos. Such videos can act as ground truth data with known texture occluded behind the added specularities. We demonstrate that our image generation technique produces better results than a standard CycleGAN model. Additionally, we leverage this data augmentation to re-train a deep-learning based feature extractor (SuperPoint) and show that it improves. CycleSTTN code is made available here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/tree/pytorch0.3.1.

References

  1. Asif, M., Chen, L., Song, H., Yang, J., Frangi, A.F.: An automatic framework for endoscopic image restoration and enhancement. Appl. Intell. 51(4), 1959–1971 (2021)

    Article  Google Scholar 

  2. Azagra, P., et al.: Endomapper dataset of complete calibrated endoscopy procedures. arXiv preprint arXiv:2204.14240 (2022)

  3. Barbed, O.L., Chadebecq, F., Morlana, J., Montiel, J.M.M., Murillo, A.C.: Superpoint features in endoscopy. In: Manfredi, L., et al. (eds.) ISGIE GRAIL 2022. LNCS, vol. 13754, pp. 45–55. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-21083-9_5

    Chapter  Google Scholar 

  4. Borgli, H., et al.: Hyperkvasir, a comprehensive multi-class image and video dataset for gastrointestinal endoscopy. Sci. Data 7(1), 1–14 (2020)

    Article  Google Scholar 

  5. Chadebecq, F., Lovat, L.B., Stoyanov, D.: Artificial intelligence and automation in endoscopy and surgery. Nat. Rev. Gastroenterol. Hepatol. 20(3), 171–182 (2023)

    Article  Google Scholar 

  6. Chang, Y.L., Liu, Z.Y., Lee, K.Y., Hsu, W.: Free-form video inpainting with 3D gated convolution and temporal PatchGAN. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9066–9075 (2019)

    Google Scholar 

  7. Daher, R., Vasconcelos, F., Stoyanov, D.: A temporal learning approach to inpainting endoscopic specularities and its effect on image correspondence. arXiv preprint arXiv:2203.17013 (2022)

  8. DeTone, D., Malisiewicz, T., Rabinovich, A.: Superpoint: self-supervised interest point detection and description. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 224–236 (2018)

    Google Scholar 

  9. Diamantis, D.E., Gatoula, P., Iakovidis, D.K.: Endovae: generating endoscopic images with a variational autoencoder. In: 2022 IEEE 14th Image, Video, and Multidimensional Signal Processing Workshop (IVMSP), pp. 1–5. IEEE (2022)

    Google Scholar 

  10. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  11. Funke, I., Bodenstedt, S., Riediger, C., Weitz, J., Speidel, S.: Generative adversarial networks for specular highlight removal in endoscopic images. In: Medical Imaging 2018: Image-Guided Procedures, Robotic Interventions, and Modeling, vol. 10576, pp. 8–16. SPIE (2018)

    Google Scholar 

  12. García-Vega, A., et al.: A novel hybrid endoscopic dataset for evaluating machine learning-based photometric image enhancement models. In: Pichardo Lagunas, O., Martínez-Miranda, J., Martínez Seis, B. (eds.) MICAI 2022. LNCS, vol. 13612, pp. 267–281. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19493-1_22

    Chapter  Google Scholar 

  13. Hegenbart, S., Uhl, A., Vécsei, A.: Impact of endoscopic image degradations on LBP based features using one-class SVM for classification of celiac disease. In: 2011 7th International Symposium on Image and Signal Processing and Analysis (ISPA), pp. 715–720. IEEE (2011)

    Google Scholar 

  14. Mathew, S., Nadeem, S., Kaufman, A.: CLTS-GAN: color-lighting-texture-specular reflection augmentation for colonoscopy. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13437, pp. 519–529. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16449-1_49

    Chapter  Google Scholar 

  15. Mathew, S., Nadeem, S., Kumari, S., Kaufman, A.: Augmenting colonoscopy using extended and directional cyclegan for lossy image translation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4696–4705 (2020)

    Google Scholar 

  16. Ozyoruk, K.B., et al.: Endoslam dataset and an unsupervised monocular visual odometry and depth estimation approach for endoscopic videos. Med. Image Anal. 71, 102058 (2021)

    Article  Google Scholar 

  17. Rivoir, D., et al.: Long-term temporally consistent unpaired video translation from simulated surgical 3D data. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3343–3353 (2021)

    Google Scholar 

  18. Schonberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4104–4113 (2016)

    Google Scholar 

  19. Schönberger, J.L., Zheng, E., Frahm, J.-M., Pollefeys, M.: Pixelwise view selection for unstructured multi-view stereo. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 501–518. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_31

    Chapter  Google Scholar 

  20. de Souza Jr, L.A., et al.: Assisting barrett’s esophagus identification using endoscopic data augmentation based on generative adversarial networks. Comput. Biol. Med. 126, 104029 (2020)

    Article  Google Scholar 

  21. Xu, J., et al.: OfGAN: realistic rendition of synthetic colonoscopy videos. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12263, pp. 732–741. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59716-0_70

    Chapter  Google Scholar 

  22. Yamane, H., et al.: Automatic generation of polyp image using depth map for endoscope dataset. Procedia Comput. Sci. 192, 2355–2364 (2021)

    Article  Google Scholar 

  23. Zeng, Y., Fu, J., Chao, H.: Learning joint spatial-temporal transformations for video inpainting. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12361, pp. 528–543. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58517-4_31

    Chapter  Google Scholar 

  24. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV) (2017)

    Google Scholar 

Download references

Acknowledgments

This research was funded in part, by the Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS) [203145/Z/16/Z]; the Engineering and Physical Sciences Research Council (EPSRC) [EP/P027938/1, EP/R004080/1, EP/P012841/1]; the Royal Academy of Engineering Chair in Emerging Technologies Scheme; H2020 FET (GA863146); and the UCL Centre for Digital Innovation through the Amazon Web Services (AWS) Doctoral Scholarship in Digital Innovation 2022/2023. For the purpose of open access, the author has applied a CC BY public copyright licence to any author accepted manuscript version arising from this submission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rema Daher .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 65009 KB)

Supplementary material 2 (pdf 49202 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Daher, R., Barbed, O.L., Murillo, A.C., Vasconcelos, F., Stoyanov, D. (2023). CycleSTTN: A Learning-Based Temporal Model for Specular Augmentation in Endoscopy. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14229. Springer, Cham. https://doi.org/10.1007/978-3-031-43999-5_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43999-5_54

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43998-8

  • Online ISBN: 978-3-031-43999-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics