Skip to main content

PIViT: Large Deformation Image Registration with Pyramid-Iterative Vision Transformer

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14229))

  • 3669 Accesses

Abstract

Large deformation image registration is a challenging task in medical image registration. Iterative registration and pyramid registration are two common CNN-based methods for the task. However, these methods usually consume more parameters and time. Additionally, the existing CNN-based registration methods mainly focus on local feature extraction, limiting their ability to capture the long-distance correlation between image pairs. In this paper, we propose a fast and accurate learning-based algorithm, Pyramid-Iterative Vision Transformer (PIViT), for 3D large deformation medical image registration. Our method constructs a novel pyramid iterative composite structure to solve large deformation problem by using low-scale iterative registration with a Swin Transformer-based long-distance correlation decoder. Furthermore, we exploit pyramid structure to supplement the detailed information of the deformation field by using high-scale feature maps. Comprehensive experimental results implemented on brain MRI and liver CT datasets show that the proposed method is superior to the existing registration methods in terms of registration accuracy, training time and parameters, especially of a significant advantage in running time. Our code is available at https://github.com/Torbjorn1997/PIViT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abadi, M., et al.: Tensorflow: a system for large-scale machine learning. In: 12th \(\{\)USENIX\(\}\) Symposium on Operating Systems Design and Implementation (\(\{\)OSDI\(\}\) 16), pp. 265–283 (2016)

    Google Scholar 

  2. Antonelli, M., et al.: The medical segmentation decathlon. arXiv preprint arXiv:2106.05735 (2021)

  3. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: An unsupervised learning model for deformable medical image registration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  4. Ballas, N., Yao, L., Pal, C., Courville, A.: Delving deeper into convolutional networks for learning video representations. arXiv preprint arXiv:1511.06432 (2015)

  5. Bellec, P., Chu, C., Chouinard-Decorte, F., Benhajali, Y., Margulies, D.S., Craddock, R.C.: The neuro bureau ADHD-200 preprocessed repository. Neuroimage 144, 275–286 (2017)

    Article  Google Scholar 

  6. Bilic, P., et al.: The liver tumor segmentation benchmark (LITS). arXiv preprint arXiv:1901.04056 (2019)

  7. Chen, J., Frey, E.C., He, Y., Segars, W.P., Li, Y., Du, Y.: TransMorph: transformer for unsupervised medical image registration. Med. Image Anal. 82, 102615 (2022)

    Article  Google Scholar 

  8. Dalca, A.V., Balakrishnan, G., Guttag, J., Sabuncu, M.R.: Unsupervised learning of probabilistic diffeomorphic registration for images and surfaces. Med. Image Anal. 57, 226–236 (2019)

    Article  Google Scholar 

  9. Di Martino, A., et al.: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Mol. Psychiatry 19(6), 659–667 (2014)

    Article  Google Scholar 

  10. Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945)

    Article  Google Scholar 

  11. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  12. He, Y., et al.: Geometric visual similarity learning in 3D medical image self-supervised pre-training (2023). https://doi.org/10.48550/ARXIV.2303.00874. https://arxiv.org/abs/2303.00874

  13. Heimann, T., et al.: Comparison and evaluation of methods for liver segmentation from CT datasets. IEEE Trans. Med. Imaging 28(8), 1251–1265 (2009)

    Article  Google Scholar 

  14. Hu, X., Kang, M., Huang, W., Scott, M.R., Wiest, R., Reyes, M.: Dual-stream pyramid registration network. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 382–390. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_43

    Chapter  Google Scholar 

  15. Jaderberg, M., Simonyan, K., Zisserman, A., et al.: Spatial transformer networks. In: Advances in Neural Information Processing Systems, vol. 28 (2015)

    Google Scholar 

  16. Jia, X., Bartlett, J., Zhang, T., Lu, W., Qiu, Z., Duan, J.: U-Net vs TransFormer: is U-Net outdated in medical image registration? In: Lian, C., Cao, X., Rekik, I., Xu, X., Cui, Z. (eds.) MLMI 2022. LNCS, vol. 13583, pp. 151–160. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-21014-3_16

    Chapter  Google Scholar 

  17. Jiang, S., Campbell, D., Lu, Y., Li, H., Hartley, R.: Learning to estimate hidden motions with global motion aggregation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9772–9781 (2021)

    Google Scholar 

  18. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  19. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021)

    Google Scholar 

  20. Meng, M., Bi, L., Feng, D., Kim, J.: Non-iterative coarse-to-fine registration based on single-pass deep cumulative learning. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13436, pp. 88–97. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16446-0_9

    Chapter  Google Scholar 

  21. Mok, T.C., Chung, A.: Fast symmetric diffeomorphic image registration with convolutional neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4644–4653 (2020)

    Google Scholar 

  22. Mok, T.C.W., Chung, A.C.S.: Large deformation diffeomorphic image registration with Laplacian pyramid networks. In: Martel, L., et al. (eds.) MICCAI 2020. LNCS, vol. 12263, pp. 211–221. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59716-0_21

    Chapter  Google Scholar 

  23. Mok, T.C., Chung, A.: Affine medical image registration with coarse-to-fine vision transformer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20835–20844 (2022)

    Google Scholar 

  24. Mueller, S.G., et al.: Ways toward an early diagnosis in Alzheimer’s disease: the Alzheimer’s disease neuroimaging initiative (ADNI). Alzheimer’s Dement. 1(1), 55–66 (2005)

    Article  Google Scholar 

  25. Shattuck, D.W., et al.: Construction of a 3D probabilistic atlas of human cortical structures. Neuroimage 39(3), 1064–1080 (2008)

    Article  Google Scholar 

  26. Shi, J., et al.: XMorpher: full transformer for deformable medical image registration via cross attention. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 1346, pp. 217–226. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16446-0_21

    Chapter  Google Scholar 

  27. Xu, H., Zhang, J., Cai, J., Rezatofighi, H., Tao, D.: GMFlow: learning optical flow via global matching. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8121–8130 (2022)

    Google Scholar 

  28. Zhao, S., Dong, Y., Chang, E.I., Xu, Y., et al.: Recursive cascaded networks for unsupervised medical image registration. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10600–10610 (2019)

    Google Scholar 

  29. Zhao, S., Lau, T., Luo, J., Eric, I., Chang, C., Xu, Y.: Unsupervised 3D end-to-end medical image registration with volume Tweening network. IEEE J. Biomed. Health Inform. 24(5), 1394–1404 (2019)

    Article  Google Scholar 

  30. Zhu, Y., Lu, S.: Swin-VoxelMorph: a symmetric unsupervised learning model for deformable medical image registration using Swin transformer. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention - MICCAI 2022, vol. 13436, pp. 78–87. Springer, Cham (2022)

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Nature Science Foundation of China (62273150), Shanghai Natural Science Foundation (22ZR1421000), Shanghai Municipal Science and Technology Committee of Shanghai Outstanding Academic Leaders Plan (21XD1430600), the Science and Technology Commission of Shanghai Municipality (14DZ2260800).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Wen .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 13110 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ma, T., Dai, X., Zhang, S., Wen, Y. (2023). PIViT: Large Deformation Image Registration with Pyramid-Iterative Vision Transformer. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14229. Springer, Cham. https://doi.org/10.1007/978-3-031-43999-5_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43999-5_57

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43998-8

  • Online ISBN: 978-3-031-43999-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics