Skip to main content

X2Vision: 3D CT Reconstruction from Biplanar X-Rays with Deep Structure Prior

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

We propose an unsupervised deep learning method to reconstruct a 3D tomographic image from biplanar X-rays, to reduce the number of required projections, the patient dose, and the acquisition time. To address this ill-posed problem, we introduce prior knowledge of anatomic structures by training a generative model on 3D CTs of head and neck. We optimize the latent vectors of the generative model to recover a volume that both integrates this prior knowledge and ensures consistency between the reconstructed image and input projections. Our method outperforms recent methods in terms of reconstruction error while being faster and less radiating than current clinical workflow. We evaluate our method in a clinical configuration for radiotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beichel, R.R., et al.: Data from QIN-HEADNECK (2015)

    Google Scholar 

  2. Ellis, S., et al.: Evaluation of 3D GANs for Lung Tissue Modelling in Pulmonary CT. arXiv (2022)

    Google Scholar 

  3. Feldkamp, L.A., Davis, L.C., Kress, J.W.: Practical cone-beam algorithm. J. Opt. Soc. Am. A-Opt. Image Sci. Vis. (1984)

    Google Scholar 

  4. Glocker, B., Komodakis, N., Tziritas, G., Navab, N., Paragios, N.: Dense image registration through MRFs and efficient linear programming. Med. Image Anal. 12(6), 731–741 (2008)

    Article  Google Scholar 

  5. Goodfellow, I., et al.: Generative adversarial networks. Commun. ACM 63(11) (2020)

    Google Scholar 

  6. Grossberg, A., et al.: Anderson Cancer Center Head and Neck Quantitative Imaging Working Group. HNSCC (2020)

    Google Scholar 

  7. Henzler, P., Rasche, V., Ropinski, T., Ritschel, T.: Single-image tomography: 3D volumes from 2D cranial X-rays. In: Computer Graphics Forum (2018)

    Google Scholar 

  8. Herman, G.T.: Fundamentals of Computerized Tomography: Image Reconstruction from Projections. Springer, London (2009). https://doi.org/10.1007/978-1-84628-723-7

    Book  MATH  Google Scholar 

  9. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local nash equilibrium. In: NeurIPS (2017)

    Google Scholar 

  10. Hong, S., et al.: 3D-StyleGAN: a style-based generative adversarial network for generative modeling of three-dimensional medical images. In: Engelhardt, S., et al. (eds.) DGM4MICCAI/DALI -2021. LNCS, vol. 13003, pp. 24–34. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88210-5_3

    Chapter  Google Scholar 

  11. Hubbell, J.H.: Tables of X-Ray Mass Attenuation Coefficients 1 keV to 20 MeV for Elements Z=1 to 92 and 48 Additional Substance of Dosimetric Interest. NISTIR 5632 (1995)

    Google Scholar 

  12. Jiang, Y.: MFCT-GAN: multi-information network to reconstruct CT volumes for security screening. J. Intell. Manuf. Spec. Equip. 3(1), 17–30 (2022)

    Google Scholar 

  13. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  14. Karras, T., Aittala, M., Hellsten, J., Laine, S., Lehtinen, J., Aila, T.: Training generative adversarial networks with limited data. In: NeurIPS (2020)

    Google Scholar 

  15. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of stylegan. In: CVPR (2020)

    Google Scholar 

  16. Kinahan, P., Muzi, M., Bialecki, B., Coombs, L.: Data from the ACRIN 6685 Trial HNSCC-FDG-PET/CT (2020)

    Google Scholar 

  17. Kwan, J.Y.Y., et al.: Data from Radiomic Biomarkers to Refine Risk Models for Distant Metastasis in Oropharyngeal Carcinoma (2019)

    Google Scholar 

  18. Marinescu, R.V., Moyer, D., Golland, P.: Bayesian Image Reconstruction Using Deep Generative Models. arXiv (2020)

    Google Scholar 

  19. Mescheder, L., Geiger, A., Nowozin, S.: Which training methods for GANs do actually converge? In: ICML (2018)

    Google Scholar 

  20. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. Commun. ACM 65(1) (2021)

    Google Scholar 

  21. Peng, C., Liao, H., Wong, G., Luo, J., Zhou, S.K., Chellappa, R.: XraySyn: realistic view synthesis from a single radiograph through CT priors. In: AAAI (2021)

    Google Scholar 

  22. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  23. Shen, L., Pauly, J., Xing, L.: NeRP: implicit neural representation learning with prior embedding for sparsely sampled image reconstruction. IEEE Trans. Neural Netw. (2022)

    Google Scholar 

  24. Shen, L., Zhao, W., Capaldi, D., Pauly, J., Xing, L.: A geometry-informed deep learning framework for ultra-sparse 3D tomographic image reconstruction. Comput. Biol. Med. 148, 105710 (2022)

    Article  Google Scholar 

  25. Shen, L., Zhao, W., Xing, L.: Patient-specific reconstruction of volumetric computed tomography images from a single projection view via deep learning. Nature 3(11), 880–888 (2019)

    Google Scholar 

  26. Shibata, H., et al.: On the simulation of ultra-sparse-view and ultra-low-dose computed tomography with maximum a posteriori reconstruction using a progressive flow-based deep generative model. Tomography 8(5), 2129–2152 (2022)

    Article  Google Scholar 

  27. Unberath, M., et al.: DeepDRR – a catalyst for machine learning in fluoroscopy-guided procedures. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 98–106. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_12

    Chapter  Google Scholar 

  28. Vallières, M., et al.: Data from Head-Neck-PET-CT (2020)

    Google Scholar 

  29. Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers (2003)

    Google Scholar 

  30. Ying, X., Guo, H., Ma, K., Wu, J., Weng, Z., Zheng, Y.: X2CT-GAN: reconstructing CT from biplanar X-rays with generative adversarial networks. In: CVPR (2019)

    Google Scholar 

  31. Zha, R., Zhang, Y., Li, H.: NAF: neural attenuation fields for sparse-view CBCT reconstruction. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13436, pp. 442–452. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16446-0_42

    Chapter  Google Scholar 

  32. Zuley, M.L., et al.: The Cancer Genome Atlas Head-Neck Squamous Cell Carcinoma Collection TCGA-HNSC) (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Cafaro .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 614 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cafaro, A. et al. (2023). X2Vision: 3D CT Reconstruction from Biplanar X-Rays with Deep Structure Prior. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14229. Springer, Cham. https://doi.org/10.1007/978-3-031-43999-5_66

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43999-5_66

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43998-8

  • Online ISBN: 978-3-031-43999-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics