Skip to main content

Multi-perspective Adaptive Iteration Network for Metal Artifact Reduction

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14229))

  • 3489 Accesses

Abstract

Metal artifact reduction (MAR) is important to alleviate the impacts of metal implants on clinical diagnosis with CT images. However, enhancing the quality of metal-corrupted image remains a challenge. Although the deep learning-based MAR methods have achieved impressive success, their interpretability and generalizability need further improvement. It is found that metal artifacts mainly concentrate in high frequency, and their distributions in the wavelet domain are significantly different from those in the image domain. Decomposing metal artifacts into different frequency bands is conducive for us to characterize them. Based on these observations, a model is constructed with dual-domain constraints to encode artifacts by utilizing wavelet transform. To facilitate the optimization of the model and improve its interpretability, a novel multi-perspective adaptive iteration network (MAIN) is proposed. Our MAIN is constructed under the guidance of the proximal gradient technique. Moreover, with the usage of the adaptive wavelet module, the network gains better generalization performance. Compared with the representative state-of-the-art deep learning-based MAR methods, the results show that our MAIN significantly outperforms other methods on both of a synthetic and a clinical datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beck, A., Teboulle, M.: A fast iterative Shrinkage-Thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Diwakar, M., Kumar, M.: A review on CT image noise and its denoising. Biomed. Signal Process. Control 42, 73–88 (2018)

    Article  Google Scholar 

  3. Ghani, M.U., Karl, W.: Deep learning based sinogram correction for metal artifact reduction. Electron. Imaging 2018, 4721–4728 (2018)

    Article  Google Scholar 

  4. Ghose, S., Singh, N., Singh, P.: Image denoising using deep learning: convolutional neural network. In: 2020 10th International Conference on Cloud Computing, Data Science & Engineering (Confluence), pp. 511–517 (2020)

    Google Scholar 

  5. Gjesteby, L., et al.: Metal artifact reduction in CT: where are we after four decades? IEEE Access 4, 5826–5849 (2016)

    Article  Google Scholar 

  6. Kalender, W.A., Hebel, R., Ebersberger, J.: Reduction of CT artifacts caused by metallic implants. Radiology 164(2), 576–577 (1987)

    Article  Google Scholar 

  7. Katsura, M., Sato, J., Akahane, M., Kunimatsu, A., Abe, O.: Current and novel techniques for metal artifact reduction at CT: practical guide for radiologists. Radiographics 38(2), 450–461 (2018)

    Article  Google Scholar 

  8. Lin, W.A., et al.: DuDoNet: dual domain network for CT metal artifact reduction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  9. Liu, P., et al.: Deep learning to segment pelvic bones: large-scale CT datasets and baseline models. Int. J. Comput. Assist. Radiol. Surg. 16(5), 749–756 (2021). https://doi.org/10.1007/s11548-021-02363-8

    Article  Google Scholar 

  10. Luo, Y., et al.: Adaptive rectification based adversarial network with spectrum constraint for high-quality PET image synthesis. Med. Image Anal. 77, 102335 (2022)

    Article  Google Scholar 

  11. Lyu, Y., Lin, W.-A., Liao, H., Lu, J., Zhou, S.K.: Encoding metal mask projection for metal artifact reduction in computed tomography. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12262, pp. 147–157. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59713-9_15

    Chapter  Google Scholar 

  12. Medoff, B.P., Brody, W.R., Nassi, M., Macovski, A.: Iterative convolution backprojection algorithms for image reconstruction from limited data. J. Opt. Soc. Am. 73(11), 1493–1500 (1983)

    Article  Google Scholar 

  13. Meyer, E., Raupach, R., Lell, M., Schmidt, B., Kachelrieß, M.: Normalized metal artifact reduction (NMAR) in computed tomography. Med. Phys. 37(10), 5482–5493 (2010)

    Article  Google Scholar 

  14. Pan, J., Zhang, H., Wu, W., Gao, Z., Wu, W.: Multi-domain integrative swin transformer network for sparse-view tomographic reconstruction. Patterns 3(6), 100498 (2022)

    Article  Google Scholar 

  15. Park, H.S., Lee, S.M., Kim, H.P., Seo, J.K., Chung, Y.E.: CT sinogram-consistency learning for metal-induced beam hardening correction. Med. Phys. 45(12), 5376–5384 (2018)

    Article  Google Scholar 

  16. Paszke, A., et al.: Automatic differentiation in PyTorch (2017)

    Google Scholar 

  17. Peng, C., et al.: An irregular metal trace inpainting network for X-ray CT metal artifact reduction. Med. Phys. 47(9), 4087–4100 (2020)

    Article  Google Scholar 

  18. Rodriguez, M.X.B., et al.: Deep adaptive wavelet network. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) (2020)

    Google Scholar 

  19. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  20. Rousselle, A., et al.: Metallic implants and CT artefacts in the CTV area: where are we in 2020? Cancer/Radiothérapie 24(6), 658–666 (2020). 31e Congrès national de la Société française de radiothérapie oncologique

    Google Scholar 

  21. Verburg, J.M., Seco, J.: CT metal artifact reduction method correcting for beam hardening and missing projections. Phys. Med. Biol. 57(9), 2803 (2012)

    Article  Google Scholar 

  22. Wang, H., Li, Y., Meng, D., Zheng, Y.: Adaptive convolutional dictionary network for CT metal artifact reduction. In: Raedt, L.D. (ed.) Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI 2022, pp. 1401–1407. International Joint Conferences on Artificial Intelligence Organization (2022)

    Google Scholar 

  23. Wang, H., et al.: InDuDoNet: an interpretable dual domain network for CT metal artifact reduction. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12906, pp. 107–118. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87231-1_11

    Chapter  Google Scholar 

  24. Wang, J., Zhao, Y., Noble, J.H., Dawant, B.M.: Conditional generative adversarial networks for metal artifact reduction in CT images of the ear. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_1

    Chapter  Google Scholar 

  25. Wang, Y., et al.: 3D auto-context-based locality adaptive multi-modality GANs for PET synthesis. IEEE Trans. Med. Imaging 38(6), 1328–1339 (2019)

    Article  MathSciNet  Google Scholar 

  26. Wellenberg, R., Hakvoort, E., Slump, C., Boomsma, M., Maas, M., Streekstra, G.: Metal artifact reduction techniques in musculoskeletal CT-imaging. Eur. J. Radiol. 107, 60–69 (2018)

    Article  Google Scholar 

  27. Yan, K., et al.: Deep lesion graphs in the wild: relationship learning and organization of significant radiology image findings in a diverse large-scale lesion database. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  28. Yu, L., Zhang, Z., Li, X., Xing, L.: Deep sinogram completion with image prior for metal artifact reduction in CT images. IEEE Trans. Med. Imaging 40(1), 228–238 (2021)

    Article  Google Scholar 

  29. Zhan, B., et al.: Multi-constraint generative adversarial network for dose prediction in radiotherapy. Med. Image Anal. 77, 102339 (2022)

    Article  Google Scholar 

  30. Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Trans. Image Process. 26(7), 3142–3155 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhang, Y., Yu, H.: Convolutional neural network based metal artifact reduction in X-ray computed tomography. IEEE Trans. Med. Imaging 37(6), 1370–1381 (2018)

    Article  Google Scholar 

  32. Zhou, B., Chen, X., Zhou, S.K., Duncan, J.S., Liu, C.: DuDoDR-Net: dual-domain data consistent recurrent network for simultaneous sparse view and metal artifact reduction in computed tomography. Med. Image Anal. 75, 102289 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Natural Science Foundation of China (grant numbers 62101611 and 62201628), National Key Research and Development Program of China (2022YFA1204200), Guangdong Basic and Applied Basic Research Foundation (grant number 2022A1515011375,2023A1515012278,2023A1515011780) and Shenzhen Science and Technology Program (grant number JCYJ20220530145411027, JCYJ20220818102414031).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weiwen Wu or Jianjia Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mao, H., Wang, Y., Yu, H., Wu, W., Zhang, J. (2023). Multi-perspective Adaptive Iteration Network for Metal Artifact Reduction. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14229. Springer, Cham. https://doi.org/10.1007/978-3-031-43999-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43999-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43998-8

  • Online ISBN: 978-3-031-43999-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics