Skip to main content

Dual-Modality Grading of Keratoconus Severity Based on Corneal Topography and Clinical Indicators

  • Conference paper
  • First Online:
Ophthalmic Medical Image Analysis (OMIA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14096))

Included in the following conference series:

  • 346 Accesses

Abstract

Keratoconus (KC) is a blinding eye disease characterized by corneal dilation, thinning, and conical protrusion. Currently, most studies just focus on KC screening and use only one modality. In this paper, we utilize two modalities of data, corneal topography and clinical indicators, to grade KC severity as normal, mild, moderate, and severe, rather than screening. Considering the data characteristics of each modality, we model their data in a targeted manner. For corneal topography, a Global Feature Extraction (GFE) block based on Self-Attention is designed as a parallel branch to obtain global information. In addition, a Feature Fusion (FF) module is proposed to better fuse local and global information. For clinical indicators, we utilize a tree model to grade KC and remove redundant information through feature selection. Finally, a trainable fusion model is used to make the final decision. Experimental results show that the proposed method outperforms all the competing methods and achieves 94.47% for weighted recall, improving the accuracy of KC grading effectively.

X. Xu and Y.Chen—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al-Timemy, A.H., Ghaeb, N.H., Mosa, Z.M., Escudero, J.: Deep transfer learning for improved detection of keratoconus using corneal topographic maps. Cogn. Comput. 14(5), 1627–1642 (2022)

    Article  Google Scholar 

  2. Chen, T., Guestrin, C.: Xgboost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016)

    Google Scholar 

  3. Feng, R., et al.: Kernet: a novel deep learning approach for keratoconus and sub-clinical keratoconus detection based on raw data of the pentacam hr system. IEEE J. Biomed. Health Inform. 25(10), 3898–3910 (2021)

    Article  Google Scholar 

  4. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Annals of statistics, pp. 1189–1232 (2001)

    Google Scholar 

  5. Gao, S., et al.: Lkg-net: lightweight keratoconus grading network based on corneal topography. Biomed. Opt. Express 14(2), 799–814 (2023)

    Article  Google Scholar 

  6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  7. Hosmer Jr, D.W., Lemeshow, S., Sturdivant, R.X.: Applied logistic regression, vol. 398. John Wiley & Sons (2013)

    Google Scholar 

  8. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  9. Huo, X., et al.: Hifuse: hierarchical multi-scale feature fusion network for medical image classification. arXiv preprint arXiv:2209.10218 (2022)

  10. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456. PMLR (2015)

    Google Scholar 

  11. Ke, G., et al.: Lightgbm: a highly efficient gradient boosting decision tree. In: Advances in Neural Information Processing Systems 30 (2017)

    Google Scholar 

  12. Kuo, B.I., et al.: Keratoconus screening based on deep learning approach of corneal topography. Translational Vision Sci. Technol. 9(2), 53–53 (2020)

    Article  Google Scholar 

  13. Lavric, A., et al.: Keratoconus severity detection from elevation, topography and pachymetry raw data using a machine learning approach. IEEE Access 9, 84344–84355 (2021)

    Article  Google Scholar 

  14. Liu, T., Huang, J., Liao, T., Pu, R., Liu, S., Peng, Y.: A hybrid deep learning model for predicting molecular subtypes of human breast cancer using multimodal data. IRBM 43(1), 62–74 (2022)

    Article  Google Scholar 

  15. Mehta, S., Rastegari, M.: Mobilevit: light-weight, general-purpose, and mobile-friendly vision transformer. arXiv preprint arXiv:2110.02178 (2021)

  16. Mitchell, T.M., Mitchell, T.M.: Machine learning, vol. 1. McGraw-hill New York (1997)

    Google Scholar 

  17. Platt, J.: Sequential minimal optimization: a fast algorithm for training support vector machines (1998)

    Google Scholar 

  18. Rosenblatt, F.: The perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 65(6), 386 (1958)

    Article  Google Scholar 

  19. Salzberg, S.L.: C4. 5: programs for machine learning by j. ross quinlan. Morgan Kaufmann Publishers, Inc., 1993 (1994)

    Google Scholar 

  20. Sarkar, T.: Xbnet: an extremely boosted neural network. Intelligent Syst. Appli. 15, 200097 (2022)

    Google Scholar 

  21. Sorkin, N., Varssano, D.: Corneal collagen crosslinking: a systematic review. Ophthalmologica 232(1), 10–27 (2014)

    Article  Google Scholar 

  22. Srinivas, A., Lin, T.Y., Parmar, N., Shlens, J., Abbeel, P., Vaswani, A.: Bottleneck transformers for visual recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16519–16529 (2021)

    Google Scholar 

  23. Tan, M., Le, Q.: Efficientnet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114. PMLR (2019)

    Google Scholar 

  24. Vanathi, M., Sidhu, N.: Classifications and patterns of keratoconus. In: Keratoconus: Diagnosis and Treatment, pp. 59–67. Springer (2022). https://doi.org/10.1007/978-981-19-3571-8_18

  25. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems 30 (2017)

    Google Scholar 

  26. Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_1

    Chapter  Google Scholar 

  27. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1492–1500 (2017)

    Google Scholar 

  28. Yan, R., et al.: Richer fusion network for breast cancer classification based on multimodal data. BMC Med. Inform. Decis. Mak. 21(1), 1–15 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaofeng Zhang or Xinjian Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, X. et al. (2023). Dual-Modality Grading of Keratoconus Severity Based on Corneal Topography and Clinical Indicators. In: Antony, B., Chen, H., Fang, H., Fu, H., Lee, C.S., Zheng, Y. (eds) Ophthalmic Medical Image Analysis. OMIA 2023. Lecture Notes in Computer Science, vol 14096. Springer, Cham. https://doi.org/10.1007/978-3-031-44013-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44013-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44012-0

  • Online ISBN: 978-3-031-44013-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics