Skip to main content

Multi-relational Graph Convolutional Neural Networks for Carotid Artery Stenosis Diagnosis via Fundus Images

  • Conference paper
  • First Online:
Ophthalmic Medical Image Analysis (OMIA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14096))

Included in the following conference series:

Abstract

The accumulation of carotid plaque leads to carotid artery stenosis, which in turn increases the risk of cerebrovascular disease. Non-invasive diagnosis of carotid stenosis using fundus images offers a promising approach. However, the challenge lies in extracting relevant features from these images, as convolutional neural networks(CNNs) or Transformers, which focus solely on individual images, fail to consider the interdependencies between them, leading to limited diagnostic accuracy. To address this issue, we propose a novel and effective network by combining CNNs and multi-relational graph convolutional neural networks(M-GCNs). Firstly, we feed the input images into four distinct branches, which consist of CNNs or Transformers, with each branch associated with a particular relation. This process generates unique feature vectors for each branch. Secondly, we construct a multi-graph for the four kinds of clinical data, such as gender, age, sex and pid, to obtain four adjacency matrices. Finally, the feature vectors and the corresponding four adjacency matrices are input into the graph convolutional network layer respectively to obtain the prediction features, and then the prediction results are obtained through the fully connected layer. Experiments are carried out on a private dataset and the results demonstrate that the accuracy of the proposed algorithm is 10%–20% higher than that of the comparison model. Our code is available at https://github.com/momoyrz/Carotid-stenosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Belotti, F., et al.: Ophthalmic artery originating from the anterior cerebral artery: anatomo-radiological study, histological analysis, and literature review. Neurosurg. Rev. 39(3), 483–493 (2016)

    Article  MathSciNet  Google Scholar 

  2. Bruna, J., Zaremba, W., Szlam, A., LeCun, Y.: Spectral networks and locally connected networks on graphs (2014)

    Google Scholar 

  3. Chaikijurajai, T., Ehlers, J.P., Tang, W.H.W.: Retinal microvasculature: a potential window into heart failure prevention. JACC Heart Fail. 10(11), 785–791 (2022)

    Article  Google Scholar 

  4. Chen, C.F.R., Fan, Q., Panda, R.: Crossvit: cross-attention multi-scale vision transformer for image classification. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 357–366 (2021)

    Google Scholar 

  5. Debrey, S.M., et al.: Diagnostic accuracy of magnetic resonance angiography for internal carotid artery disease: a systematic review and meta-analysis. Stroke 39(8), 2237–2248 (2008)

    Article  Google Scholar 

  6. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering (2017)

    Google Scholar 

  7. Fu, H., Cheng, J., Xu, Y., Wong, D.W.K., Liu, J., Cao, X.: Joint optic disc and cup segmentation based on multi-label deep network and polar transformation. IEEE Trans. Medical Imaging 37(7), 1597–1605 (2018). https://doi.org/10.1109/TMI.2018.2791488

    Article  Google Scholar 

  8. Gulshan, V., et al.: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316(22), 2402–2410 (2016)

    Article  Google Scholar 

  9. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. Adv. Neural Inf. Process. Syst. 30, 1–11 (2017)

    Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE, Las Vegas (2016)

    Google Scholar 

  11. Jiang, B., Zhang, Z., Lin, D., Tang, J., Luo, B.: Semi-supervised learning with graph learning-convolutional networks. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11305–11312 (2019)

    Google Scholar 

  12. Kohane, I.S.: Ten things we have to do to achieve precision medicine. Science 349(6243), 37–38 (2015). https://doi.org/10.1126/science.aab1328

    Article  Google Scholar 

  13. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017)

    Article  Google Scholar 

  14. Lee, J.I., et al.: Stroke in patients with occlusion of the internal carotid artery: options for treatment. Expert Rev. Neurotherapeut. 14(10), 1153–1167 (2014)

    Article  Google Scholar 

  15. Li, F., et al.: Deep learning-based automated detection for diabetic retinopathy and diabetic macular oedema in retinal fundus photographs. Eye 36(7), 1433–1441 (2022)

    Article  Google Scholar 

  16. Li, X., Ng, M.K., Xu, G., Yip, A.: Multi-relational graph convolutional networks: Generalization guarantees and experiments. Neural Netw. 161, 343–358 (2023). https://www.sciencedirect.com/science/article/abs/pii/S0893608023000576

  17. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 9992–10002. IEEE, Montreal (2021)

    Google Scholar 

  18. Lu, W., Tong, Y., Yu, Y., Xing, Y., Chen, C., Shen, Y.: Deep learning-based automated classification of multi-categorical abnormalities from optical coherence tomography images. Transl. Vision Sci. Technol. 7(6), 41–41 (2018)

    Article  Google Scholar 

  19. van der Maaten, L., Hinton, G.: Visualizing data using t-sne. J. Mach. Learn. Res. 9(86), 2579–2605 (2008). https://www.jmlr.org/papers/v9/vandermaaten08a.html

  20. Mao, C., Yao, L., Luo, Y.: ImageGCN: multi-relational image graph convolutional networks for disease identification with chest x-rays. IEEE Trans. Med. Imaging 41(8), 1990–2003 (2022)

    Article  Google Scholar 

  21. Momjian-Mayor, I., Baron, J.C.: The pathophysiology of watershed infarction in internal carotid artery disease: review of cerebral perfusion studies. Stroke 36(3), 567–577 (2005)

    Article  Google Scholar 

  22. Schlichtkrull, M., Kipf, T.N., Bloem, P., van den Berg, R., Titov, I., Welling, M.: Modeling relational data with graph convolutional networks. In: Gangemi, A., et al. (eds.) ESWC 2018. LNCS, vol. 10843, pp. 593–607. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93417-4_38

    Chapter  Google Scholar 

  23. Shaban, M., Awan, R., Fraz, M.M., Azam, A., Snead, D., Rajpoot, N.M.: Context-aware convolutional neural network for grading of colorectal cancer histology images (2019)

    Google Scholar 

  24. Shamshad, F., et al.: Transformers in medical imaging: a survey. Med. Image Anal. 88, 102802 (2023)

    Article  Google Scholar 

  25. Tan, M., Le, Q.: Efficientnet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114. PMLR (2019)

    Google Scholar 

  26. Wiebers, D.O., et al.: Pathogenesis, natural history, and treatment of unruptured intracranial aneurysms. In: Mayo Clinic Proceedings, vol. 79, pp. 1572–1583. Elsevier (2004)

    Google Scholar 

  27. Zitnik, M., Agrawal, M., Leskovec, J.: Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 34(13), i457–i466 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported in part by the National Natural Science Foundation of China(No.U22A2024, 62106153, 82271103), Guangdong Basic and Applied Basic Research Foundation(No.2020A1515110605, 2022A15150 12326) and Natural Science Foundation of Shenzhen(No.JCYJ20220818095809021).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guoming Zhang or Baiying Lei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Qu, J. et al. (2023). Multi-relational Graph Convolutional Neural Networks for Carotid Artery Stenosis Diagnosis via Fundus Images. In: Antony, B., Chen, H., Fang, H., Fu, H., Lee, C.S., Zheng, Y. (eds) Ophthalmic Medical Image Analysis. OMIA 2023. Lecture Notes in Computer Science, vol 14096. Springer, Cham. https://doi.org/10.1007/978-3-031-44013-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44013-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44012-0

  • Online ISBN: 978-3-031-44013-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics