Skip to main content

A Structure-Consistency GAN for Unpaired AS-OCT Image Inpainting

  • Conference paper
  • First Online:
Ophthalmic Medical Image Analysis (OMIA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14096))

Included in the following conference series:

  • 384 Accesses

Abstract

Anterior segment optical coherence tomography (AS-OCT) is a crucial imaging modality in ophthalmology, providing valuable insights into corneal pathologies. However, during AS-OCT imaging, intense signals in highly reflective regions can easily lead to saturation effects, resulting in pronounced stripes across the cornea. It compromises the image visual quality and impacts automated ophthalmic analysis. To address this issue, we propose an unsupervised Structure-Consistency Generative Adversarial Network (SC-GAN) that captures the underlying semantic structural knowledge in both the spatial domain and frequency space within the generative model. This strategy aims to mitigate the influence of bright stripes and restore corneal structural details in AS-OCT images. Specifically, SC-GAN introduces a stripe perceptual loss to extract visual representations by utilizing the perceptual similarity between striped and stripe-free images. Moreover, Fourier feature mapping is adopted to learn high-frequency information, thereby achieving crucial structure consistency. The experimental results demonstrate that the proposed SC-GAN can removes stripes while preserving crucial corneal structures, surpassing the competing algorithms. Furthermore, we validate the benefits of SC-GAN in the corneal segmentation task.

G. Bai and S. Li—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Holden, B., Mertz, G., McNally, J.: Corneal swelling response to contact lenses worn under extended wear conditions. Invest. Ophthalmol. Visual Sci. 24(2), 218–226 (1983)

    Google Scholar 

  2. LaRocca, F., Chiu, S.J., McNabb, R.P., Kuo, A.N., Izatt, J.A., Farsiu, S.: Robust automatic segmentation of corneal layer boundaries in sdoct images using graph theory and dynamic programming. Biomed. Opt. Express 2(6), 1524–1538 (2011)

    Article  Google Scholar 

  3. Li, X., Liang, S., Zhang, J.: Correction of saturation effects in endoscopic swept-source optical coherence tomography based on dual-channel detection. J. Biomed. Opt. 23(3), 030502–030502 (2018)

    Article  Google Scholar 

  4. Huang, Y., Kang, J.U.: Real-time reference a-line subtraction and saturation artifact removal using graphics processing unit for high-frame-rate fourier-domain optical coherence tomography video imaging. Opt. Eng. 51(7), 073203–073203 (2012)

    Article  Google Scholar 

  5. Byers, R., Matcher, S.: Attenuation of stripe artifacts in optical coherence tomography images through wavelet-fft filtering. Biomed. Opt. Express 10(8), 4179–4189 (2019)

    Article  Google Scholar 

  6. Li, S., Qin, B., Xiao, J., Liu, Q., Wang, Y., Liang, D.: Multi-channel and multi-model-based autoencoding prior for grayscale image restoration. IEEE Trans. Image Process. 29, 142–156 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cheong, H., et al.: Deshadowgan: a deep learning approach to remove shadows from optical coherence tomography images. Transl. Vision Sci. Technol. 9(2), 23–23 (2020)

    Article  Google Scholar 

  8. Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014)

  9. Ouyang, J., Mathai, T.S., Lathrop, K., Galeotti, J.: Accurate tissue interface segmentation via adversarial pre-segmentation of anterior segment oct images. Biomed. Opt. Express 10(10), 5291–5324 (2019)

    Article  Google Scholar 

  10. Tang, Y., et al.: Multi-scale sparse representation-based shadow inpainting for retinal oct images. In: Medical Imaging 2022: Image Processing, vol. 12032, pp. 9–17. SPIE (2022)

    Google Scholar 

  11. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: IEEE International Conference on Computer Vision, pp. 2242–2251 (2017)

    Google Scholar 

  12. Liu, M.Y., Breuel, T., Kautz, J.: Unsupervised image-to-image translation networks. Adv. Neural Inf. Process. Syst. 30 (2017)

    Google Scholar 

  13. Park, T., Efros, A.A., Zhang, R., Zhu, J.-Y.: Contrastive learning for unpaired image-to-image translation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12354, pp. 319–345. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58545-7_19

    Chapter  Google Scholar 

  14. Kim, J., Kim, M., Kang, H., Lee, K.H.: U-gat-it: unsupervised generative attentional networks with adaptive layer-instance normalization for image-to-image translation. In: International Conference on Learning Representations (2020)

    Google Scholar 

  15. Ma, Y., et al.: Structure and illumination constrained gan for medical image enhancement. IEEE Trans. Med. Imaging 40(12), 3955–3967 (2021)

    Article  Google Scholar 

  16. Mathew, S., Nadeem, S., Kumari, S., Kaufman, A.: Augmenting colonoscopy using extended and directional cyclegan for lossy image translation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 4696–4705 (2020)

    Google Scholar 

  17. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017)

    Google Scholar 

  18. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  19. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 586–595 (2018)

    Google Scholar 

  20. Qiao, C., et al.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy. Nat. Methods 18(2), 194–202 (2021)

    Article  Google Scholar 

  21. Tang, H., Xu, D., Sebe, N., Yan, Y.: Attention-guided generative adversarial networks for unsupervised image-to-image translation. In: International Joint Conference on Neural Networks, pp. 1–8. IEEE (2019)

    Google Scholar 

  22. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (2015)

    Google Scholar 

  23. Patterson, M., Foster, F.: The improvement and quantitative assessment of b-mode images produced by an annular array/cone hybrid. Ultrason. Imaging 5(3), 195–213 (1983)

    Article  Google Scholar 

  24. Fisher, R.: On the “probable error’’ of a coefficient of correlation. Metron 1, 3–32 (1920)

    MathSciNet  Google Scholar 

  25. Sattar, F., Floreby, L., Salomonsson, G., Lovstrom, B.: Image enhancement based on a nonlinear multiscale method. IEEE Trans. Image Process. 6(6), 888–895 (1997)

    Article  Google Scholar 

  26. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Li or Meng Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bai, G. et al. (2023). A Structure-Consistency GAN for Unpaired AS-OCT Image Inpainting. In: Antony, B., Chen, H., Fang, H., Fu, H., Lee, C.S., Zheng, Y. (eds) Ophthalmic Medical Image Analysis. OMIA 2023. Lecture Notes in Computer Science, vol 14096. Springer, Cham. https://doi.org/10.1007/978-3-031-44013-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44013-7_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44012-0

  • Online ISBN: 978-3-031-44013-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics