Abstract
Interpretable part-prototype models are computer vision models that are explainable by design. The models learn prototypical parts and recognise these components in an image, thereby combining classification and explanation. Despite the recent attention for intrinsically interpretable models, there is no comprehensive overview on evaluating the explanation quality of interpretable part-prototype models. Based on the Co-12 properties for explanation quality as introduced in [42] (e.g., correctness, completeness, compactness), we review existing work that evaluates part-prototype models, reveal research gaps and outline future approaches for evaluation of the explanation quality of part-prototype models. This paper, therefore, contributes to the progression and maturity of this relatively new research field on interpretable part-prototype models. We additionally provide a “Co-12 cheat sheet” that acts as a concise summary of our findings on evaluating part-prototype models.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
In ProtoPNet, only 2% of the prototypes have no overlap with an object, since ProtoPNet uses cropped images which makes it less likely to entirely miss the object.
References
Adebayo, J., Gilmer, J., Muelly, M., Goodfellow, I., Hardt, M., Kim, B.: Sanity checks for saliency maps. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems (2018)
Barredo Arrieta, A., et al.: Explainable Artificial Intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion 58 (2020)
Biederman, I.: Recognition-by-components: a theory of human image understanding. Psychol. Rev. 94(2), 115 (1987)
Borowski, J., et al.: Exemplary natural images explain CNN activations better than state-of-the-art feature visualization. In: Proceedings of the International Conference on Learning Representations (2021)
Brendel, W., Bethge, M.: Approximating CNNs with bag-of-local-features models works surprisingly well on ImageNet. In: Proceedings of the International Conference on Learning Representations (2019)
Bruckert, S., Finzel, B., Schmid, U.: The next generation of medical decision support: a roadmap toward transparent expert companions. Front. Artif. Intell. 3, 507973 (2020)
Carloni, G., Berti, A., Iacconi, C., Pascali, M.A., Colantonio, S.: On the applicability of prototypical part learning in medical images: breast masses classification using ProtoPNet. In: Rousseau, J.J., Kapralos, B. (eds.) ICPR 2022. LNCS, vol. 13643, pp. 539–557. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-37660-3_38
Chen, C., Li, O., Tao, D., Barnett, A., Rudin, C., Su, J.: This looks like that: deep learning for interpretable image recognition. In: Wallach, H.M., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E.B., Garnett, R. (eds.) Advances in Neural Information Processing Systems, pp. 8928–8939 (2019)
Clement, T., Kemmerzell, N., Abdelaal, M., Amberg, M.: XAIR: a systematic metareview of explainable AI (XAI) aligned to the software development process. Mach. Learn. Knowl. Extr. 5(1), 78–108 (2023)
Colin, J., Fel, T., Cadene, R., Serre, T.: What I cannot predict, I do not understand: a human-centered evaluation framework for explainability methods. In: Advances in Neural Information Processing Systems (2022)
Das, S., Xu, P., Dai, Z., Endert, A., Ren, L.: Interpreting deep neural networks through prototype factorization. In: Fatta, G.D., Sheng, V.S., Cuzzocrea, A., Zaniolo, C., Wu, X. (eds.) Proceedings of the International Conference on Data Mining Workshops, ICDM Workshops, pp. 448–457. IEEE (2020)
Doshi-Velez, F., Kim, B.: Considerations for evaluation and generalization in interpretable machine learning. In: Escalante, H.J., et al. (eds.) Explainable and Interpretable Models in Computer Vision and Machine Learning. TSSCML, pp. 3–17. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98131-4_1
Ehsan, U., et al.: The who in explainable AI: how AI background shapes perceptions of AI explanations. arXiv preprint arXiv:2107.13509 (2021)
Fong, R., Vedaldi, A.: Net2Vec: quantifying and explaining how concepts are encoded by filters in deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8730–8738. IEEE Computer Society (2018)
Gautam, S., Höhne, M.M.-C., Hansen, S., Jenssen, R., Kampffmeyer, M.: This looks more like that: enhancing self-explaining models by prototypical relevance propagation. Pattern Recogn. 136, 109172 (2023)
Ghorbani, A., Wexler, J., Zou, J.Y., Kim, B.: Towards automatic concept-based explanations. In: Wallach, H.M., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E.B., Garnett, R. (eds.) Advances in Neural Information Processing Systems, pp. 9273–9282 (2019)
Goodman, B., Flaxman, S.: European union regulations on algorithmic decision-making and a “right to explanation’’. AI Mag. 38(3), 50–57 (2017)
Goyal, Y., Feder, A., Shalit, U., Kim, B.: Explaining classifiers with causal concept effect (CaCE). arXiv preprint arXiv:1907.07165 (2019)
Goyal, Y., Wu, Z., Ernst, J., Batra, D., Parikh, D., Lee, S.: Counterfactual visual explanations. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the International Conference on Machine Learning, ICML 2019, Long Beach, California, USA, 9–15 June 2019, vol. 97, pp. 2376–2384. PMLR (2019)
Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.: A survey of methods for explaining black box models. ACM Comput. Surv. (CSUR) 51(5), 1–42 (2018)
Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neural networks. In: Precup, D., Teh, Y.W. (eds.) Proceedings of the International Conference on Machine Learning, vol. 70, pp. 1321–1330. PMLR (2017)
Hase, P., Bansal, M.: Evaluating explainable AI: which algorithmic explanations help users predict model behavior? In: Jurafsky, D., Chai, J., Schluter, N., Tetreault, J.R. (eds.) Proceedings of the Annual Meeting of the Association for Computational Linguistics, ACL 2020, Online, 5–10 July 2020, pp. 5540–5552. Association for Computational Linguistics (2020)
Hase, P., Xie, H., Bansal, M.: The out-of-distribution problem in explainability and search methods for feature importance explanations. In: Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P., Vaughan, J.W. (eds.) Advances in Neural Information Processing Systems, vol. 34, pp. 3650–3666. Curran Associates Inc. (2021)
He, Y., Shen, Z., Cui, P.: Towards non-IID image classification: a dataset and baselines. Pattern Recogn. 110, 107383 (2021)
Hoffman, R.R., Mueller, S.T., Klein, G., Litman, J.: Metrics for explainable AI: challenges and prospects. arXiv:1812.04608 [cs] (2019)
Hoffmann, A., Fanconi, C., Rade, R., Kohler, J.: This looks like that... does it? Shortcomings of latent space prototype interpretability in deep networks. arXiv preprint arXiv:2105.02968 (2021)
Huysmans, J., Dejaeger, K., Mues, C., Vanthienen, J., Baesens, B.: An empirical evaluation of the comprehensibility of decision table, tree and rule based predictive models. Decis. Support Syst. 51(1) (2011)
Jacovi, A., Goldberg, Y.: Towards faithfully interpretable NLP systems: how should we define and evaluate faithfulness? In: Jurafsky, D., Chai, J., Schluter, N., Tetreault, J.R. (eds.) Proceedings of the Annual Meeting of the Association for Computational Linguistics, ACL 2020, Online, 5–10 July 2020, pp. 4198–4205. Association for Computational Linguistics (2020)
Jeyakumar, J.V., Noor, J., Cheng, Y., Garcia, L., Srivastava, M.B.: How can I explain this to you? An empirical study of deep neural network explanation methods. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H. (eds.) Advances in Neural Information Processing Systems (2020)
Kaur, H., Nori, H., Jenkins, S., Caruana, R., Wallach, H., Wortman Vaughan, J.: Interpreting interpretability: understanding data scientists’ use of interpretability tools for machine learning. In: Proceedings of the CHI Conference on Human Factors in Computing Systems, pp. 1–14. Association for Computing Machinery, New York (2020)
Kim, S.S.Y., Meister, N., Ramaswamy, V.V., Fong, R., Russakovsky, O.: HIVE: evaluating the human interpretability of visual explanations. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13672, pp. 280–298. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19775-8_17
Kulesza, T., Burnett, M., Wong, W.-K., Stumpf, S.: Principles of explanatory debugging to personalize interactive machine learning. In: Proceedings of the International Conference on Intelligent User Interfaces, pp. 126–137. Association for Computing Machinery, New York (2015)
Lakkaraju, H., Leskovec, J.: Confusions over time: an interpretable Bayesian model to characterize trends in decision making. In: Lee, D.D., Sugiyama, M., von Luxburg, U., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing Systems, pp. 3261–3269 (2016)
Lampert, C.H., Nickisch, H., Harmeling, S.: Learning to detect unseen object classes by between-class attribute transfer. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 951–958 (2009)
Liu, Y., Khandagale, S., White, C., Neiswanger, W.: Synthetic benchmarks for scientific research in explainable machine learning. In: NeurIPS Datasets and Benchmarks Track (2021)
Michel, A., Jha, S.K., Ewetz, R.: A survey on the vulnerability of deep neural networks against adversarial attacks. Progress Artif. Intell. 11, 131–141 (2021). https://doi.org/10.1007/s13748-021-00269-9
Mohammadjafari, S., Cevik, M., Thanabalasingam, M., Basar, A.: Using ProtoPNet for interpretable Alzheimer’s disease classification. In: Canadian Conference on AI (2021)
Montavon, G.: Gradient-based vs. propagation-based explanations: an axiomatic comparison. In: Samek, W., Montavon, G., Vedaldi, A., Hansen, L.K., Müller, K.-R. (eds.) Explainable AI: Interpreting, Explaining and Visualizing Deep Learning. LNCS (LNAI), vol. 11700, pp. 253–265. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-28954-6_13
Nakka, K.K., Salzmann, M.: Towards robust fine-grained recognition by maximal separation of discriminative features. In: Ishikawa, H., Liu, C.-L., Pajdla, T., Shi, J. (eds.) ACCV 2020. LNCS, vol. 12627, pp. 391–408. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-69544-6_24
Nauta, M., Jutte, A., Provoost, J., Seifert, C.: This looks like that, because ... explaining prototypes for interpretable image recognition. In: Kamp, M., et al. (eds.) ECML PKDD 2021. CCIS, vol. 1524, pp. 441–456. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-93736-2_34
Nauta, M., Schlötterer, J., van Keulen, M., Seifert, C.: PIP-Net: patch-based intuitive prototypes for interpretable image classification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2744–2753 (2023)
Nauta, M., et al.: From anecdotal evidence to quantitative evaluation methods: a systematic review on evaluating explainable AI. ACM Comput. Surv. (2023)
Nauta, M., van Bree, R., Seifert, C.: Neural prototype trees for interpretable fine-grained image recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 14933–14943 (2021)
Nguyen, G., Kim, D., Nguyen, A.: The effectiveness of feature attribution methods and its correlation with automatic evaluation scores. In: Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P., Vaughan, J.W. (eds.) Advances in Neural Information Processing Systems, vol. 34, pp. 26422–26436. Curran Associates Inc. (2021)
Papenmeier, A., Kern, D., Englebienne, G., Seifert, C.: It’s complicated: the relationship between user trust, model accuracy and explanations in AI. ACM Trans. Comput.-Hum. Interact. 29(4) (2022)
Pearce, T., Brintrup, A., Zhu, J.: Understanding softmax confidence and uncertainty. arXiv preprint arXiv:2106.04972 (2021)
Rong, Y., Leemann, T., Borisov, V., Kasneci, G., Kasneci, E.: A consistent and efficient evaluation strategy for attribution methods. In: Chaudhuri, K., Jegelka, S., Song, L., Szepesvari, C., Niu, G., Sabato, S. (eds.) Proceedings of the International Conference on Machine Learning, vol. 162, pp. 18770–18795. PMLR (2022)
Rudin, C.: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 1(5), 206–215 (2019)
Rymarczyk, D., Struski, Ł, Górszczak, M., Lewandowska, K., Tabor, J., Zieliński, B.: Interpretable image classification with differentiable prototypes assignment. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, pp. 351–368. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19775-8_21
Rymarczyk, D., Struski, L., Tabor, J., Zieliński, B.: ProtoPShare: prototypical parts sharing for similarity discovery in interpretable image classification. In: Proceedings of the ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 1420–1430. Association for Computing Machinery, New York (2021)
Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: IEEE International Conference on Computer Vision, ICCV, pp. 618–626. IEEE Computer Society (2017)
Singh, G.: Think positive: an interpretable neural network for image recognition. Neural Netw. 151, 178–189 (2022)
Singh, G., Yow, K.-C.: An interpretable deep learning model for Covid-19 detection with chest X-ray images. IEEE Access 9, 85198–85208 (2021)
Sinhamahapatra, P., Heidemann, L., Monnet, M., Roscher, K.: Towards human-interpretable prototypes for visual assessment of image classification models. arXiv preprint arXiv:2211.12173 (2022)
Summers, C., Dinneen, M.J.: Nondeterminism and instability in neural network optimization. In: Meila, M., Zhang, T. (eds.) Proceedings of the International Conference on Machine Learning, vol. 139, pp. 9913–9922. PMLR (2021)
Vilone, G., Longo, L.: Notions of explainability and evaluation approaches for explainable artificial intelligence. Inf. Fusion 76 (2021)
Wang, C., et al.: Knowledge distillation to ensemble global and interpretable prototype-based mammogram classification models. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13433, pp. 14–24. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16437-8_2
Wang, J., Liu, H., Wang, X., Jing, L.: Interpretable image recognition by constructing transparent embedding space. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 895–904 (2021)
Williams, P.A., Jenkins, J., Valacich, J., Byrd, M.D.: Measuring actual behaviors in HCI research-a call to action and an example. AIS Trans. Hum.-Comput. Interact. 9(4), 339–352 (2017)
Xie, W., Li, X.-H., Cao, C.C., Zhang, N.L.: ViT-CX: causal explanation of vision transformers. arXiv preprint arXiv:2211.03064 (2022)
Xu-Darme, R., Quénot, G., Chihani, Z., Rousset, M.-C.: Sanity checks and improvements for patch visualisation in prototype-based image classification. working paper or preprint (2023)
Xue, M., et al.: ProtoPFormer: concentrating on prototypical parts in vision transformers for interpretable image recognition. arXiv preprint arXiv:2208.10431 (2022)
Yang, M., Kim, B.: Benchmarking attribution methods with relative feature importance. CoRR, abs/1907.09701 (2019)
Yeh, C., Kim, B., Arik, S.Ö., Li, C., Pfister, T., Ravikumar, P.: On completeness-aware concept-based explanations in deep neural networks. In: Advances in Neural Information Processing Systems (2020)
Zhou, J., Gandomi, A.H., Chen, F., Holzinger, A.: Evaluating the quality of machine learning explanations: a survey on methods and metrics. Electronics 10(5) (2021)
Zhuang, D., Zhang, X., Song, S., Hooker, S.: Randomness in neural network training: characterizing the impact of tooling. In: Marculescu, D., Chi, Y., Wu, C. (eds.) Proceedings of the Machine Learning and Systems, vol. 4, pp. 316–336 (2022)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Nauta, M., Seifert, C. (2023). The Co-12 Recipe for Evaluating Interpretable Part-Prototype Image Classifiers. In: Longo, L. (eds) Explainable Artificial Intelligence. xAI 2023. Communications in Computer and Information Science, vol 1901. Springer, Cham. https://doi.org/10.1007/978-3-031-44064-9_21
Download citation
DOI: https://doi.org/10.1007/978-3-031-44064-9_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-44063-2
Online ISBN: 978-3-031-44064-9
eBook Packages: Computer ScienceComputer Science (R0)