Skip to main content

Selecting Textural Characteristics of Chest X-Rays for Pneumonia Lesions Classification with the Integrated Gradients XAI Attribution Method

  • Conference paper
  • First Online:
Explainable Artificial Intelligence (xAI 2023)

Abstract

Global texture characteristics are powerful tools for solving medical image classification tasks. There are many such characteristics like Grey-Level Co-occurrence Matrices, Grey-Level Run-Length Matrices, Grey-Level Size Zone Matrices, texture matrices and others. However, not all are important when solving particular image classification tasks, while their calculation requires many computational resources. The current work aims to evaluate the importance of each characteristic, taking into account a large dimensionality of the texture characteristics matrices. To achieve this aim, it is proposed to use neural networks and a novel mean integrated gradient eXplainable Artificial Intelligence method to achieve the stated aim. The experiment showed that texture matrices with higher mean integrated gradient values are more important than others while solving pneumonia lesions classification tasks on X-Ray lung images. The result also indicates that classification quality does not degrade and even improves after shrinking the feature set with the proposed method. These facts prove that the mean integrated gradients can be used for solving feature selection tasks for classification purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amadasun, M., King, R.: Textural features corresponding to textural properties. IEEE Trans. Syst. Man Cybern. 19(5), 1264–1274 (1989). https://doi.org/10.1109/21.44046

    Article  Google Scholar 

  2. Asraf, A.: COVID19, pneumonia and normal chest x-ray PA dataset (2021)

    Google Scholar 

  3. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006). https://doi.org/10.1007/11744023_32

    Chapter  Google Scholar 

  4. Constantinou, M., Exarchos, T., Vrahatis, A.G., Vlamos, P.: COVID-19 classification on chest x-ray images using deep learning methods. Int. J. Environ. Res. Public Health 20(3), 2035 (2023). https://doi.org/10.3390/ijerph20032035

    Article  Google Scholar 

  5. Costa, A.F., Humpire-Mamani, G., Traina, A.J.M.: An efficient algorithm for fractal analysis of textures. In: 2012 25th SIBGRAPI Conference on Graphics, Patterns and Images, pp. 39–46 (2012). https://doi.org/10.1109/SIBGRAPI.2012.15

  6. Davydko, O., Hladkyi, Y., Linnik, M., Nosovets, O., Pavlov, V., Nastenko, I.: Hybrid classifiers based on cnn, lsof, gmdh in covid-19 pneumonic lesions types classification task. In: 2021 IEEE 16th International Conference on Computer Sciences and Information Technologies (CSIT), vol. 1, pp. 380–384 (2021). https://doi.org/10.1109/CSIT52700.2021.9648752

  7. Galloway, M.M.: Texture analysis using gray level run lengths. Comput. Graph. Image Process. 4(2), 172–179 (1975). https://doi.org/10.1016/S0146-664X(75)80008-6

    Article  Google Scholar 

  8. Gaudêncio, A.S., et al.: Evaluation of covid-19 chest computed tomography: a texture analysis based on three-dimensional entropy. Biomed. Signal Process. Control 68, 102582 (2021). https://doi.org/10.1016/j.bspc.2021.102582

    Article  Google Scholar 

  9. Hamza, A., et al.: Covid-19 classification using chest x-ray images: a framework of cnn-lstm and improved max value moth flame optimization. Front. Public Health 10 (2022). https://doi.org/10.3389/fpubh.2022.948205

  10. Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. SMC 3(6), 610–621 (1973). https://doi.org/10.1109/TSMC.1973.4309314

    Article  Google Scholar 

  11. Harris, C.R., et al.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2

    Article  Google Scholar 

  12. Hegenbart, S., Uhl, A., Vécsei, A., Wimmer, G.: Scale invariant texture descriptors for classifying celiac disease. Med. Image Anal. 17(4), 458–474 (2013)

    Article  Google Scholar 

  13. Hunter, J.D.: Matplotlib: a 2d graphics environment. Comput. Sci. Eng. 9(3), 90–95 (2007). https://doi.org/10.1109/MCSE.2007.55

    Article  Google Scholar 

  14. Jha, A., K. Aicher, J., R. Gazzara, M., Singh, D., Barash, Y.: Enhanced integrated gradients: improving interpretability of deep learning models using splicing codes as a case study. Genome Biol. 21(1) (2020). https://doi.org/10.1186/s13059-020-02055-7

  15. Khan, E., Rehman, M.Z.U., Ahmed, F., Alfouzan, F.A., Alzahrani, N.M., Ahmad, J.: Chest x-ray classification for the detection of covid-19 using deep learning techniques. Sensors 22(3) (2022). https://doi.org/10.3390/s22031211

  16. Liu, L., Fieguth, P., Guo, Y., Wang, X., Pietikäinen, M.: Local binary features for texture classification: taxonomy and experimental study. Pattern Recogn. 62, 135–160 (2017)

    Article  Google Scholar 

  17. Lundberg, S., Lee, S.I.: A unified approach to interpreting model predictions (2017)

    Google Scholar 

  18. Nielsen, B., et al.: Entropy-based adaptive nuclear features are independent prognostic markers in a total population of uterine sarcomas. Cytometry Part A (2014). https://doi.org/10.1002/cyto.a.22601

  19. Öztürk, Ş, Özkaya, U., Barstuğan, M.: Classification of coronavirus ( scpCOVID/scp -19) from scpx-ray/scp and scpCT/scp images using shrunken features. Int. J. Imaging Syst. Technol. 31(1), 5–15 (2020). https://doi.org/10.1002/ima.22469

    Article  Google Scholar 

  20. Panwar, H., Gupta, P., Siddiqui, M.K., Morales-Menendez, R., Bhardwaj, P., Singh, V.: A deep learning and grad-cam based color visualization approach for fast detection of covid-19 cases using chest x-ray and ct-scan images. Chaos Solitons Fractals 140, 110190 (2020). https://doi.org/10.1016/j.chaos.2020.110190

    Article  MathSciNet  Google Scholar 

  21. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 32, pp. 8024–8035. Curran Associates, Inc. (2019)

    Google Scholar 

  22. Patel, S., Lohakare, M., Prajapati, S., Singh, S., Patel, N.: Diaret: a browser-based application for the grading of diabetic retinopathy with integrated gradients. In: 2021 IEEE International Conference on Robotics, Automation and Artificial Intelligence (RAAI), pp. 19–23 (2021). https://doi.org/10.1109/RAAI52226.2021.9507938

  23. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  24. Preethi, G., Sornagopal, V.: Mri image classification using glcm texture features. In: 2014 International Conference on Green Computing Communication and Electrical Engineering (ICGCCEE), pp. 1–6 (2014). https://doi.org/10.1109/ICGCCEE.2014.6922461

  25. Ribeiro, M.T., Singh, S., Guestrin, C.: “why should i trust you?” explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144 (2016)

    Google Scholar 

  26. Sattarzadeh, S., Sudhakar, M., Plataniotis, K.N., Jang, J., Jeong, Y., Kim, H.: Integrated grad-cam: Sensitivity-aware visual explanation of deep convolutional networks via integrated gradient-based scoring. In: ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1775–1779 (2021). https://doi.org/10.1109/ICASSP39728.2021.9415064

  27. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: visual explanations from deep networks via gradient-based localization. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 618–626 (2017). https://doi.org/10.1109/ICCV.2017.74

  28. Sun, C., Wee, W.G.: Neighboring gray level dependence matrix for texture classification. Comput. Vision Graph. Image Process. 23(3), 341–352 (1983). https://doi.org/10.1016/0734-189X(83)90032-4

    Article  Google Scholar 

  29. Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep networks (2017)

    Google Scholar 

  30. Sunnetci, K.M., Alkan, A.: Biphasic majority voting-based comparative COVID-19 diagnosis using chest x-ray images. Expert Syst. Appl. 216, 119430 (2023). https://doi.org/10.1016/j.eswa.2022.119430

    Article  Google Scholar 

  31. Thibault, G., et al.: Texture indexes and gray level size zone matrix application to cell nuclei classification (2009)

    Google Scholar 

  32. Vilone, G., Longo, L.: Notions of explainability and evaluation approaches for explainable artificial intelligence. Inf. Fusion 76 (2021). https://doi.org/10.1016/j.inffus.2021.05.009

  33. Waskom, M.L.: Seaborn: statistical data visualization. J. Open Source Softw. 6(60), 3021 (2021). https://doi.org/10.21105/joss.03021

  34. Zhang, Y., Hong, D., McClement, D., Oladosu, O., Pridham, G., Slaney, G.: Grad-cam helps interpret the deep learning models trained to classify multiple sclerosis types using clinical brain magnetic resonance imaging. J. Neurosci. Methods 353, 109098 (2021). https://doi.org/10.1016/j.jneumeth.2021.109098

    Article  Google Scholar 

  35. Čík, I., Rasamoelina, A.D., Mach, M., Sinčák, P.: Explaining deep neural network using layer-wise relevance propagation and integrated gradients. In: 2021 IEEE 19th World Symposium on Applied Machine Intelligence and Informatics (SAMI), pp. 000381–000386 (2021). https://doi.org/10.1109/SAMI50585.2021.9378686

Download references

Acknowledgements

We want to thank Giuliano Anselmi from IBM for granting us access to computing resources and helping us configure the IBM power stations our models were trained on.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleksandr Davydko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Davydko, O., Pavlov, V., Longo, L. (2023). Selecting Textural Characteristics of Chest X-Rays for Pneumonia Lesions Classification with the Integrated Gradients XAI Attribution Method. In: Longo, L. (eds) Explainable Artificial Intelligence. xAI 2023. Communications in Computer and Information Science, vol 1901. Springer, Cham. https://doi.org/10.1007/978-3-031-44064-9_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44064-9_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44063-2

  • Online ISBN: 978-3-031-44064-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics