Abstract
We are interested in explaining models from Multi-Criteria Decision Aiding. These can be used to perform pairwise comparisons between two options, or classify an instance in an ordered list of categories, on the basis of multiple and conflicting criteria. Several models can be used to achieve such goals ranging from the simplest one assuming independence among criteria - namely the weighted sum model - to complex models able to represent complex interaction among criteria, such as the Hierarchical Choquet Integral (HCI). We consider two complementary explanations of these two models under these two goals: sufficient explanation (a.k.a. Prime Implicants) and necessary explanations (a.k.a. Counterfactual explanations). The idea of prime implicants is to identify the parts of the instance that need to be kept unchanged so that the decision remains the same, while the other parts are replaced by any value. We generalize the notion of information that needs to be kept not only on the values of the criteria (values of the instance of the criteria) but also on the weights of criteria (parameters of the model). For the HCI model, we propose a Mixed-Integer Linear Program (MILP) formulation to compute the prime implicants. We also propose a weak version of prime implicants to account for the case where the requirements of changing the other criteria in any possible way is too strong. Finally, we also propose a MILP formulation for computing counterfactual explanations of the HCI model.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aas, K., Jullum, M., Løland, A.: Explaining individual predictions when features are dependent: more accurate approximations to shapley values. Artif. Intell. 298, 103502 (2021)
Arrieta, A.B., et al.: Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion 58, 82–115 (2020)
Bana e Costa, C.A., De Corte, J., Vansnick, J.C.: MACBETH. Int. J. Inf. Technol. Decis. Making 11, 359–387 (2012)
Belahcène, K., Chevaleyre, Y., Labreuche, C., Maudet, N., Mousseau, V., Ouerdane, W.: Accountable approval sorting. In: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI 2018), pp. 70–76. Stockholm, Sweden (2018)
Belahcène, K., Labreuche, C., Maudet, N., Mousseau, V., Ouerdane, W.: Comparing options with argument schemes powered by cancellation. In: Proceedings of the Twenty-Eight International Joint Conference on Artificial Intelligence (IJCAI 2019), pp. 1537–1543. Macao, China (2019)
Benabbou, N., Perny, P., Viappiani, P.: Incremental elicitation of Choquet capacities for multicriteria choice, ranking and sorting problems. Artif. Intell. 246, 152–180 (2017)
Bresson, R., Cohen, J., Hüllermeier, E., Labreuche, C., Sebag, M.: On the identifiability of hierarchical decision models. In: Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning (KR 2021), pp. 151–162. Hanoi, Vietnam (2021)
Bresson, R., Cohen, J., Hüllermeier, E., Labreuche, C., Sebag, M.: Neural representation and learning of hierarchical 2-additive Choquet integrals. In: Proceedings of the Twenty-Eight International Joint Conference on Artificial Intelligence (IJCAI 2020), pp. 1984–1991. Yokohoma, Japan (2020)
Carenini, G., Moore, J.: Generating and evaluating evaluative arguments. Artif. Intell. 170, 925–952 (2006)
Choquet, G.: Theory of capacities. Annales de l’Institut Fourier 5, 131–295 (1953)
Darwiche, A., Hirth, A.: On the reasons behind decisions. In: Proceedings of the European Conference on Artificial Intelligence (ECAI 2020), pp. 712–720. Santiago, Spain (2020)
Datta, A., Sen, S., Zick, Y.: Algorithmic transparency via quantitative input influence: theory and experiments with learning systems. In: IEEE Symposium on Security and Privacy. San Jose, CA, USA (2016)
Figueira, J., Greco, S., Ehrgott, M. (eds.): Multiple Criteria Decision Analysis: State of the Art Surveys, 2nd edn. Kluwer Acad Publisher, New York (2016)
Främling, K.: Decision theory meets explainable AI. In: Calvaresi, D., Najjar, A., Winikoff, M., Främling, K. (eds.) EXTRAAMAS 2020. LNCS (LNAI), vol. 12175, pp. 57–74. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51924-7_4
Grabisch, M.: The application of fuzzy integrals in multicriteria decision making. Eur. J. Oper. Res. 89, 445–456 (1996)
Grabisch, M., Labreuche, C.: A decade of application of the Choquet and Sugeno integrals in multi-criteria decision aid. Ann. Oper. Res. 175, 247–286 (2010)
Grabisch, M., Murofushi, T., Sugeno, M., Kacprzyk, J.: Fuzzy Measures and Integrals. Theory and Applications. Physica Verlag, Berlin (2000)
Grabisch, M., Labreuche, C.: Interpretation of multicriteria decision making models with interacting criteria. In: Doumpos, M., Figueira, J.R., Greco, S., Zopounidis, C. (eds.) New Perspectives in Multiple Criteria Decision Making. MCDM, pp. 151–176. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11482-4_6
Greco, S., Matarazzo, B., Słowinski, R.: Rough sets methodology for sorting problems in presence of multiple attributes and criteria. Eur. J. Oper. Res. 138, 247–259 (2002)
Guidotti, R., Monreale, A., Ruggieri, S., Pedreschi, D., Turini, F., Giannotti, F.: Local rule-based explanations of black box decision systems. In: CoRR abs/1805.10820 (2018)
Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.: A survey of methods for explaining black box models. ACM Comput. Surv. 51(5), 1–42 (2018). Article 93
Halpern, J.Y., Pearl, J.: Causes and explanations: a structural-model approach - part II: explanations. Br. J. Philos. Sci. 56(4), 889–911 (2005)
Havens, T.C., Anderson, D.T.: Machine Learning of Choquet integral regression with respect to a bounded capacity (or non-monotonic fuzzy measure). In: FUZZ-IEEE-18 (2018)
Ignatiev, A., Narodytska, N., Marques-Silva, J.: Abduction-based explanations for machine learning models. In: AAAI, pp. 1511–1519. Honolulu, Hawai (2019)
Jacquet-Lagrèze, E., Siskos, Y.: Assessing a set of additive utility functions for multicriteria decision making: the UTA method. Eur. J. Oper. Res. 10, 151–164 (1982)
Keane, M., Kenny, E., Delaney, E., Smyth, B.: If only we had better counterfactual explanations: five key deficits to rectify in the evaluation of counterfactual XAI techniques. In: Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21), pp. 4466–4474 (2021)
Keeney, R.L., Raiffa, H.: Decision with Multiple Objectives. Wiley, New York (1976)
Kenny, E., Keane, M.: On generating plausible counterfactual and semi-factual explanations for deep learning. In: Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21), pp. 11575–11585 (2021)
Klein, D.: Decision Analytic Intelligent Systems: Automated Explanation and Knowledge Acquisition. Lawrence Erlbaum Associates (1994)
Krantz, D., Luce, R., Suppes, P., Tversky, A.: Foundations of measurement: Additive and Polynomial Representations, vol. 1. Academic Press, New York (1971)
Labreuche, C., Destercke, S.: How to handle missing values in multi-criteria decision aiding? In: Proceedings of the Twenty-Eight International Joint Conference on Artificial Intelligence (IJCAI 2019), pp. 1756–1763. Macao, China (2019)
Labreuche, C.: A general framework for explaining the results of a multi-attribute preference model. Artif. Intell. 175, 1410–1448 (2011)
Labreuche, C., Maudet, N., Ouerdane, W.: Justifying dominating options when preferential information is incomplete. In: European Conference on Artificial Intelligence (ECAI), pp. 486–491. Montepellier, France (2012)
Labreuche, C., Fossier, S.: Explaining multi-criteria decision aiding models with an extended shapley value. In: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI-18, pp. 331–339. International Joint Conferences on Artificial Intelligence Organization (2018)
Lundberg, S., Lee, S.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) 31st Conference on Neural Information Processing Systems (NIPS 2017), pp. 4768–4777. Long Beach, CA, USA (2017)
Marquis, P.: Consequence Finding Algorithms. In: Handbook of Defeasible Reasoning and Uncertainty Management Systems, pp. 41–145 (2000)
Miller, T.: Explainable AI: Insights from the social sciences. Artif. Intell. 267, 1–38 (2019)
Montmain, J., Mauris, G., Akharraz, A.: Elucidation and decisional risk in a multi criteria decision based on a Choquet integral aggregation: a cybernetic framework. Int. J. Multi-Criteria Decision Anal. 13, 239–258 (2005)
Nunes, I., Miles, S., Luck, M., Barbosa, S., Lucena, C.: Pattern-based explanation for automated decisions. In: European Conference on Artificial Intelligence (ECAI), pp. 669–674. Prague, Czech Republic (2014)
Ribeiro, M., Singh, S., Guestrin, C.: “Why should i trust you?": explaining the predictions of any classifier. In: KDD 2016 Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144. San Francisco, California, USA (2016)
Ribeiro, M., Singh, S., Guestrin, C.: Anchors: high-precision model-agnostic explanations. In: Thirty-Second AAAI Conference on Artificial Intelligence, pp. 1527–1535 (2018)
Roy, B.: Classement et choix en présence de points de vue multiples (la méthode ELECTRE). R.I.R.O. 2, 57–75 (1968)
Roy, B.: How outranking relations helps multiple criteria decision making. In: Cochrane, J.L., Zeleny, M. (eds.) Multiple Criteria Decision Making, pp. 179–201. University of South California Press, Columbia (1973)
Roy, B.: Decision aiding today: what should we expect? In: Gal, T., Stewart, T., Hanne, T. (eds.) Multicriteria decision making: advances in MCDM models, algorithms, theory and applications, pp. 1.1-1.35. Kluwer Academic Publishers, Boston (1999)
Rudin, C.: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead (2019)
Saaty, T.L.: A scaling method for priorities in hierarchical structures. J. Math. Psychol. 15, 234–281 (1977)
Shih, A., Choi, A., Darwiche, A.: A symbolic approach to explaining Bayesian network classifiers. In: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI 2018), pp. 5103–5111. Stockholm, Sweden (2018)
Stepin, I., Alonso, J., Catala, A., Pereira-Farina, M.: A survey of contrastive and counterfactual explanation generation methods for explainable artificial intelligence. IEEE Access 9, 11974–12001 (2021)
Strumbelj, E., Kononenko, I.: An efficient explanation of individual classifications using game theory. J. Mach. Learn. Res. 11, 1–18 (2010)
Verma, S., Dickerson, J., Hines, K.: Counterfactual explanations for machine learning: a review. In: arXiv preprint arxiv:2010.10596 (2020)
Winter, E.: A value for cooperative games with levels structure of cooperation. Int. J. Game Theory 18(2), 227–40 (1989)
Zhong, Q., Fan, X., Toni, F., Luo, X.: Explaining best decisions via argumentation. In: Proceedings of the European Conference on Social Intelligence (ECSI-2014), pp. 224–237. Barcelona, Spain (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Labreuche, C., Bresson, R. (2023). Necessary and Sufficient Explanations of Multi-Criteria Decision Aiding Models, with and Without Interacting Criteria. In: Longo, L. (eds) Explainable Artificial Intelligence. xAI 2023. Communications in Computer and Information Science, vol 1902. Springer, Cham. https://doi.org/10.1007/978-3-031-44067-0_15
Download citation
DOI: https://doi.org/10.1007/978-3-031-44067-0_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-44066-3
Online ISBN: 978-3-031-44067-0
eBook Packages: Computer ScienceComputer Science (R0)