Skip to main content

Concept Distillation in Graph Neural Networks

  • Conference paper
  • First Online:
Explainable Artificial Intelligence (xAI 2023)

Abstract

The opaque reasoning of Graph Neural Networks induces a lack of human trust. Existing graph network explainers attempt to address this issue by providing post-hoc explanations, however, they fail to make the model itself more interpretable. To fill this gap, we introduce the Concept Distillation Module, the first differentiable concept-distillation approach for graph networks. The proposed approach is a layer that can be plugged into any graph network to make it explainable by design, by first distilling graph concepts from the latent space and then using these to solve the task. Our results demonstrate that this approach allows graph networks to: (i) attain model accuracy comparable with their equivalent vanilla versions, (ii) distill meaningful concepts achieving 4.8% higher concept completeness and 36.5% lower purity scores on average, (iii) provide high-quality concept-based logic explanations for their prediction, and (iv) support effective interventions at test time: these can increase human trust as well as improve model performance.

L.C. Magister and P. Barbiero—Equal Contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adebayo, J., Gilmer, J., Muelly, M., Goodfellow, I., Hardt, M., Kim, B.: Sanity checks for saliency maps. In: Advances in Neural Information Processing Systems, vol. 31 (2018)

    Google Scholar 

  2. Alvarez Melis, D., Jaakkola, T.: Towards robust interpretability with self-explaining neural networks. In: Advances in Neural Information Processing Systems, vol. 31 (2018)

    Google Scholar 

  3. Azzolin, S., Longa, A., Barbiero, P., Lio, P., Passerini, A.: Global explainability of GNNs via logic combination of learned concepts. In: The First Learning on Graphs Conference (2022)

    Google Scholar 

  4. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barbiero, P., Ciravegna, G., Giannini, F., Lió, P., Gori, M., Melacci, S.: Entropy-based logic explanations of neural networks. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 6046–6054 (2022)

    Google Scholar 

  6. Battaglia, P., Pascanu, R., Lai, M., Jimenez Rezende, D., et al.: Interaction networks for learning about objects, relations and physics. In: Advances in Neural Information Processing Systems, vol. 29 (2016)

    Google Scholar 

  7. Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and Regression Trees. Wadsworth (1984)

    Google Scholar 

  8. Chen, Z., Bei, Y., Rudin, C.: Concept whitening for interpretable image recognition. Nat. Mach. Intell. 2(12), 772–782 (2020)

    Article  Google Scholar 

  9. Ciravegna, G., Barbiero, P., Giannini, F., Gori, M., Lió, P., Maggini, M., Melacci, S.: Logic explained networks. Artif. Intell. 314, 103822 (2023)

    Google Scholar 

  10. Davies, A., et al.: Advancing mathematics by guiding human intuition with AI. Nature 600(7887), 70–74 (2021)

    Article  MATH  Google Scholar 

  11. Durán, J.M., Jongsma, K.R.: Who is afraid of black box algorithms? On the epistemological and ethical basis of trust in medical AI. J. Med. Ethics 47(5), 329–335 (2021)

    Google Scholar 

  12. EUGDPR: GDPR. General data protection regulation (2017)

    Google Scholar 

  13. Fey, M., Lenssen, J.E.: Fast graph representation learning with PyTorch Geometric. In: ICLR Workshop on Representation Learning on Graphs and Manifolds (2019)

    Google Scholar 

  14. Forgy, E.W.: Cluster analysis of multivariate data: efficiency versus interpretability of classifications. Biometrics 21, 768–769 (1965)

    Google Scholar 

  15. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Heidelberg (2012)

    MATH  Google Scholar 

  16. Ghorbani, A., Abid, A., Zou, J.: Interpretation of neural networks is fragile. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 3681–3688 (2019)

    Google Scholar 

  17. Ghorbani, A., Wexler, J., Zou, J.Y., Kim, B.: Towards automatic concept-based explanations. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  18. Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message passing for quantum chemistry. In: International Conference on Machine Learning, pp. 1263–1272. PMLR (2017)

    Google Scholar 

  19. Kazhdan, D., Dimanov, B., Jamnik, M., Liò, P.: MEME: generating RNN model explanations via model extraction. arXiv preprint arXiv:2012.06954 (2020)

  20. Kazhdan, D., Dimanov, B., Jamnik, M., Liò, P., Weller, A.: Now you see me (CME): concept-based model extraction. arXiv preprint arXiv:2010.13233 (2020)

  21. Khasahmadi, A.H., Hassani, K., Moradi, P., Lee, L., Morris, Q.: Memory-based graph networks. In: International Conference on Learning Representations (2020)

    Google Scholar 

  22. Kim, B., et al.: Interpretability beyond feature attribution: quantitative testing with concept activation vectors (TCAV). In: International Conference on Machine Learning, pp. 2668–2677. PMLR (2018)

    Google Scholar 

  23. Kindermans, P.-J., et al.: The (un)reliability of saliency methods. In: Samek, W., Montavon, G., Vedaldi, A., Hansen, L.K., Müller, K.-R. (eds.) Explainable AI: Interpreting, Explaining and Visualizing Deep Learning. LNCS (LNAI), vol. 11700, pp. 267–280. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-28954-6_14

    Chapter  Google Scholar 

  24. Koh, P.W., Nguyen, T., Tang, Y.S., Mussmann, S., Pierson, E., Kim, B., Liang, P.: Concept bottleneck models. In: International Conference on Machine Learning, pp. 5338–5348. PMLR (2020)

    Google Scholar 

  25. Lo Piano, S.: Ethical principles in machine learning and artificial intelligence: cases from the field and possible ways forward. Humanit. Soc. Sci. Commun. 7(1), 1–7 (2020)

    Article  Google Scholar 

  26. Luo, D., Cheng, W., Xu, D., Yu, W., Zong, B., Chen, H., Zhang, X.: Parameterized explainer for graph neural network. In: Advances in Neural Information Processing Systems, vol. 33, pp. 19620–19631 (2020)

    Google Scholar 

  27. Magister, L.C., Kazhdan, D., Singh, V., Liò, P.: GCExplainer: human-in-the-loop concept-based explanations for graph neural networks. arXiv preprint arXiv:2107.11889 (2021)

  28. Miller, G.A.: The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychol. Rev. 63, 81–97 (1956)

    Article  Google Scholar 

  29. Morris, C., Kriege, N.M., Bause, F., Kersting, K., Mutzel, P., Neumann, M.: TUDataset: a collection of benchmark datasets for learning with graphs. arXiv preprint arXiv:2007.08663 (2020)

  30. Pal, A., Eksombatchai, C., Zhou, Y., Zhao, B., Rosenberg, C., Leskovec, J.: PinnerSage: multi-modal user embedding framework for recommendations at pinterest. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2311–2320 (2020)

    Google Scholar 

  31. Rudin, C.: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 1(5), 206–215 (2019)

    Article  Google Scholar 

  32. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph neural network model. IEEE Trans. Neural Networks 20(1), 61–80 (2008)

    Article  Google Scholar 

  33. Shen, M.W.: Trust in AI: interpretability is not necessary or sufficient, while black-box interaction is necessary and sufficient. arXiv preprint arXiv:2202.05302 (2022)

  34. Stokes, J.M., et al.: A deep learning approach to antibiotic discovery. Cell 180(4), 688–702 (2020)

    Article  Google Scholar 

  35. Vu, M., Thai, M.T.: PGM-explainer: probabilistic graphical model explanations for graph neural networks. In: Advances in Neural Information Processing Systems, vol. 33, pp. 12225–12235 (2020)

    Google Scholar 

  36. Wachter, S., Mittelstadt, B., Russell, C.: Counterfactual explanations without opening the black box: automated decisions and the GDPR. Harv. JL Tech. 31, 841 (2017)

    Google Scholar 

  37. Wang, M.Y.: Deep graph library: Towards efficient and scalable deep learning on graphs. In: ICLR Workshop on Representation Learning on Graphs and Manifolds (2019)

    Google Scholar 

  38. Yeh, C.K., Kim, B., Arik, S., Li, C.L., Pfister, T., Ravikumar, P.: On completeness-aware concept-based explanations in deep neural networks. In: Advances in Neural Information Processing Systems, vol. 33, pp. 20554–20565 (2020)

    Google Scholar 

  39. Ying, Z., Bourgeois, D., You, J., Zitnik, M., Leskovec, J.: GNNExplainer: generating explanations for graph neural networks. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  40. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 586–595 (2018)

    Google Scholar 

  41. Zhang, Z., Liu, Q., Wang, H., Lu, C., Lee, C.: ProtGNN: towards self-explaining graph neural networks. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 9127–9135 (2022)

    Google Scholar 

  42. Zhou, J., Gandomi, A.H., Chen, F., Holzinger, A.: Evaluating the quality of machine learning explanations: a survey on methods and metrics. Electronics 10(5), 593 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by projects FAIR (PE0000013) and SERICS (PE00000014) under the MUR National Recovery and Resilience Plan funded by the European Union - NextGenerationEU and by ERC Starting Grant No. 802554 (SPECGEO) and PRIN 2020 project n.2020TA3K9N “LEGO.AI”. Supported also by the ERC Advanced Grant 788893 AMDROMA, EC H2020RIA project “SoBigData++” (871042), PNRR MUR project IR0000013-SoBigData.it.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucie Charlotte Magister .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Magister, L.C. et al. (2023). Concept Distillation in Graph Neural Networks. In: Longo, L. (eds) Explainable Artificial Intelligence. xAI 2023. Communications in Computer and Information Science, vol 1903. Springer, Cham. https://doi.org/10.1007/978-3-031-44070-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44070-0_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44069-4

  • Online ISBN: 978-3-031-44070-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics