Skip to main content

Causal-Based Spatio-Temporal Graph Neural Networks for Industrial Internet of Things Multivariate Time Series Forecasting

  • Conference paper
  • First Online:
Explainable Artificial Intelligence (xAI 2023)

Abstract

Spatio-temporal data forecasting is a challenging task, especially in the context of the Internet of Things (IoT), due to the complicated spatial dependencies and dynamic trends of temporal patterns between different sensors. Existing frameworks for spatio-temporal data forecasting often rely on pre-defined spatial adjacency graphs based on prior knowledge for modeling spatial features. However, these methods may not effectively capture the hidden connections between components of complex industrial systems. To overcome this challenge, this paper proposes a new approach called Causal-based Spatio-Temporal Graph Neural Networks (CSTGNN) for multivariate time series forecasting. The CSTGNN model uses a causality graph to discover hidden relationships between sensors and comprises three main modules: causality graph, temporal convolution, and graph neural network, to handle spatio-temporal data features effectively. Experimental results on industrial datasets demonstrate that the proposed method outperforms existing baselines and achieves state-of-the-art performance. The proposed approach offers a promising solution for accurate and interpretable spatio-temporal data forecasting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. International data corporation (IDC). Worldwide internet of things forecast, 2021–2025 (2021)

    Google Scholar 

  2. Kalsoom, T., et al.: Impact of IoT on manufacturing industry 4.0: a new triangular systematic review. Sustainability 13(22), 12506 (2021)

    Article  Google Scholar 

  3. Esling, P., Agon, C.: Time-series data mining. ACM Comput. Surv. (CSUR) 45(1), 1–34 (2012)

    Article  MATH  Google Scholar 

  4. Mushtaq, M.F., Akram, U., Aamir, M., Ali, H., Zulqarnain, M.: Neural network techniques for time series prediction: a review. JOIV: Int. J. Inform. Vis. 3(3), 314–320 (2019)

    Article  Google Scholar 

  5. Montgomery, D.C., Jennings, C.L., Kulahci, M.: Introduction to Time Series Analysis and Forecasting. Wiley, Hoboken (2015)

    MATH  Google Scholar 

  6. Blázquez-García, A., Conde, A., Mori, U., Lozano, J.A.: A review on outlier/anomaly detection in time series data. ACM Comput. Surv. (CSUR) 54(3), 1–33 (2021)

    Article  Google Scholar 

  7. Contreras, J., Espinola, R., Nogales, F.J., Conejo, A.J.: Arima models to predict next-day electricity prices. IEEE Trans. Power Syst. 18(3), 1014–1020 (2003)

    Article  Google Scholar 

  8. Gardner Jr., E.S.: Exponential smoothing: the state of the art. J. Forecast. 4(1), 1–28 (1985)

    Google Scholar 

  9. Lewis, R., Reinsel, G.C.: Prediction of multivariate time series by autoregressive model fitting. J. Multivar. Anal. 16(3), 393–411 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  10. Masini, R.P., Medeiros, M.C., Mendes, E.F.: Machine learning advances for time series forecasting. J. Econ. Surv. 37(1), 76–111 (2023)

    Article  Google Scholar 

  11. Yang, H., Huang, K., King, I., Lyu, M.R.: Localized support vector regression for time series prediction. Neurocomputing 72(10–12), 2659–2669 (2009)

    Article  Google Scholar 

  12. Dudek, G.: Short-term load forecasting using random forests. In: Filev, D., et al. (eds.) IS 2014. AISC, vol. 323, pp. 821–828. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-11310-4_71

    Chapter  Google Scholar 

  13. Koprinska, I., Wu, D., Wang, Z.: Convolutional neural networks for energy time series forecasting. In: 2018 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2018)

    Google Scholar 

  14. Connor, J.T., Martin, R.D., Atlas, L.E.: Recurrent neural networks and robust time series prediction. IEEE Trans. Neural Netw. 5(2), 240–254 (1994)

    Article  Google Scholar 

  15. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  16. Cressie, N., Wikle, C.K.: Statistics for Spatio-Temporal Data. Wiley, Hoboken (2015)

    MATH  Google Scholar 

  17. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Philip, S.Y.: A comprehensive survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 32(1), 4–24 (2020)

    Article  MathSciNet  Google Scholar 

  18. Yu, B., Yin, H., Zhu, Z.: Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting. arXiv preprint arXiv:1709.04875 (2017)

  19. Cao, D., et al.: Spectral temporal graph neural network for multivariate time-series forecasting. Adv. Neural. Inf. Process. Syst. 33, 17766–17778 (2020)

    Google Scholar 

  20. Bui, K.-H.N., Cho, J., Yi, H.: Spatial-temporal graph neural network for traffic forecasting: an overview and open research issues. Appl. Intell. 52(3), 2763–2774 (2022)

    Article  Google Scholar 

  21. Ethics guidelines for trustworthy AI, high level expert group on artificial intelligence set up by the EU commission (2019). https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai

  22. Gunning, D., Stefik, M., Choi, J., Miller, T., Stumpf, S., Yang, G.-Z.: XAI-explainable artificial intelligence. Sci. Robot. 4(37), eaay7120 (2019)

    Article  Google Scholar 

  23. Gade, K., Geyik, S.C., Kenthapadi, K., Mithal, V., Taly, A.: Explainable AI in industry. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 3203–3204 (2019)

    Google Scholar 

  24. Schölkopf, B.: Causality for machine learning. In: Probabilistic and Causal Inference: The Works of Judea Pearl, pp. 765–804 (2022)

    Google Scholar 

  25. Pearl, J.: Causality. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  26. Spirtes, P., Glymour, C.N., Scheines, R., Heckerman, D.: Causation, Prediction, and Search. MIT Press, Cambridge (2000)

    MATH  Google Scholar 

  27. Zheng, X., Aragam, B., Ravikumar, P.K., Xing, E.P.: DAGs with NO TEARS: continuous optimization for structure learning. Adv. Neural Inf. Process. Syst. 31 (2018)

    Google Scholar 

  28. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. arXiv preprint arXiv:1511.07122 (2015)

  29. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  30. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  31. Abu-El-Haija, S., et al.: MixHop: higher-order graph convolutional architectures via sparsified neighborhood mixing. In: International Conference on Machine Learning, pp. 21–29. PMLR (2019)

    Google Scholar 

  32. Wu, Z., Pan, S., Long, G., Jiang, J., Chang, X., Zhang, C.: Connecting the dots: multivariate time series forecasting with graph neural networks. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 753–763 (2020)

    Google Scholar 

Download references

Acknowledgements

This work is partly funded by the EEA and Norway Grants under the “Development of an innovative complex predictive maintenance system (EA-Predictive)” project. The authors confirm contribution to the paper as follows: study conception, design, algorithms and implementations: A. Miraki and R. Arghandeh; providing data (through EA-SAS platform: www.easas.net) and data related insights: A. Dapkutė, V. Šiožinys and M. Jonaitis. All authors reviewed the results and approved the final version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Miraki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Miraki, A., Dapkutė, A., Šiožinys, V., Jonaitis, M., Arghandeh, R. (2023). Causal-Based Spatio-Temporal Graph Neural Networks for Industrial Internet of Things Multivariate Time Series Forecasting. In: Longo, L. (eds) Explainable Artificial Intelligence. xAI 2023. Communications in Computer and Information Science, vol 1903. Springer, Cham. https://doi.org/10.1007/978-3-031-44070-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44070-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44069-4

  • Online ISBN: 978-3-031-44070-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics