Skip to main content

Analytical Hierarchical Processing to Delineate Artificial Groundwater Recharge Zones

  • Conference paper
  • First Online:
Geographical Information Systems Theory, Applications and Management (GISTAM 2021, GISTAM 2022)

Abstract

Scarcity of water has impacted the Gulf countries and one of them is the United Arab Emirates (UAE). Among the many possibilities, a viable approach for water preservation in arid regions is Artificial Groundwater Recharging (AGR). Fresh water from multiple sources are fetched and reserved in aquifers and pumped out during lean phases. This research endeavors to delineate AGR zones in Northern part of UAE taking into account of precipitation, drainage density, geomorphology, geology, groundwater level, total dissolved solids, elevation, lineament density, and distance from residences with the aid of Remote Sensing (RS) and Geographic Information System (GIS). Parameters were measured to criteria weightings by Analytical Hierarchical Process (AHP), and then overlay analysis was performed to deduce the potential AGR map. The map was categorized in a scale ranging from very high suitability to low suitability. More than 20% of the total area was highly suitable for AGR. Geology and geomorphology were identified to be the significant factors for determination of the potential zones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dawoud, M.A.: The development of integrated water resource information management system in arid regions. Arab. J. Geosci. 6, 1601–1612 (2013). https://doi.org/10.1007/s12517-011-0449-6

    Article  Google Scholar 

  2. Bhunia, G.S.: An approach to demarcate groundwater recharge potential zone using geospatial technology. Appl. Water Sci. 10(6), 1–12 (2020). https://doi.org/10.1007/s13201-020-01231-1

    Article  Google Scholar 

  3. Al-Othman, A.A.: Enhancing groundwater recharge in arid region- a case study from central Saudi Arabia. Sci. Res. Essays 6, 2757–2762 (2011). https://doi.org/10.5897/SRE11.173

    Article  Google Scholar 

  4. United Arab Emirates Population Statistics 2022—GMI. https://www.globalmediainsight.com/blog/uae-population-statistics/. Accessed 24 Jan 2022

  5. How much water does the UAE use per day? – SidmartinBio. https://www.sidmartinbio.org/how-much-water-does-the-uae-use-per-day/. Accessed 24 Jan 2022

  6. Shanableh, A., Al-Ruzouq, R., Yilmaz, A.G., et al.: Effects of land cover change on urban floods and rainwater harvesting: a case study in Sharjah, UAE. Water (Switzerland) 10 (2018). https://doi.org/10.3390/w10050631

  7. Country Commercial Guides: United Arab Emirates - Water. Int. Trade Adm. (2020). https://next.trade.gov/country-commercial-guides/united-arab-emirates-water. Accessed 24 Jan 2022

  8. Riad, P.H.S., Billib, M., Hassan, A.A., et al.: Application of the overlay weighted model and boolean logic to determine the best locations for artificial recharge of groundwater. J. Urban Environ. Eng. 5, 57–66 (2011). https://doi.org/10.4090/juee.2011.v5n2.057066

    Article  Google Scholar 

  9. Rahimi, S., Shadman, M., Ali Abbaspour, R.: Using combined AHP-genetic algorithm in artificial groundwater recharge site selection of Gareh Bygone Plain. Iran. Environ. Earth Sci. 72, 1979–1992 (2014). https://doi.org/10.1007/s12665-014-3109-9

  10. Ghayoumian, J., Saravi, M.M.: Application of GIS techniques to determine areas most suitable for artificial groundwater recharge in a coastal aquifer in southern Iran. 30, 364–374 (2007). https://doi.org/10.1016/j.jseaes.2006.11.002

  11. Samadder, R.K., Kumar, S., Gupta, R.P.: Paleochannels and their potential for artificial groundwater recharge in the western Ganga plains. J. Hydrol. 400, 154–164 (2011). https://doi.org/10.1016/j.jhydrol.2011.01.039

    Article  Google Scholar 

  12. Dinesh Kumar, M., Patel, A., Ravindranath, R., Singh, O.P.: Chasing a mirage: water harvesting and artificial recharge in naturally water-scarce regions. Econ. Polit. Wkly. 43, 61–71 (2008)

    Google Scholar 

  13. Chandramohan, R., Vignesh, N.S., Krishnamoorthy, R.: Remote sensing and GIS based approach for delineation of artificial recharge sites in Palani Taluk. Dindigul Dist. 8, 698–706 (2017)

    Google Scholar 

  14. Mokarram, M., Saber, A., Mohammadizadeh, P., Abdolali, A.: Determination of artificial recharge location using analytic hierarchy process and Dempster-Shafer theory. Environ. Earth Sci. 79,(2020). https://doi.org/10.1007/s12665-020-08994-5

  15. Bhowmick, P.: A review on GIS based Fuzzy and Boolean logic modelling approach to identify the suitable sites for Artificial Recharge. Sch. J. Eng. Technol. (SJET) 2, 316–319 (2014)

    Google Scholar 

  16. Mokarram, M., Negahban, S., Abdolali, A., Ghasemi, M.M.: Using GIS-based order weight average (OWA) methods to predict suitable locations for the artificial recharge of groundwater (2021)

    Google Scholar 

  17. Khan, A., Govil, H., Taloor, A.K., Kumar, G.: Identification of artificial groundwater recharge sites in parts of Yamuna River basin India based on remote sensing and geographical information system. Groundw. Sustain. Dev. 11, 100415 (2020). https://doi.org/10.1016/j.gsd.2020.100415

  18. Selvarani, A.G., Maheswaran, G., Elangovan, K.: Identification of artificial recharge sites for Noyyal River basin using GIS and remote sensing. J. Ind. Soc. Remote Sens. 45, 67–77 (2017). https://doi.org/10.1007/s12524-015-0542-5

    Article  Google Scholar 

  19. Al-Ruzouq, R., Shanableh, A., Yilmaz, A., et al.: Multicriteria Spatial Analysis to Map Artificial Groundwater Recharge Zones: Northern UAE, pp. 255–262 (2021). https://doi.org/10.5220/0010432802550262

  20. Murad, A.A., Nuaimi, H., Hammadi, M.: Comprehensive assessment of water resources in the United Arab Emirates (UAE). Water Resour. Manage. 21, 1449–1463 (2007). https://doi.org/10.1007/s11269-006-9093-4

    Article  Google Scholar 

  21. Al-Ruzouq, R., Shanableh, A., Yilmaz, A.G., et al.: Dam site suitability mapping and analysis using an integrated GIS and machine learning approach. Water (Switzerland) 11,(2019). https://doi.org/10.3390/w11091880

  22. Al-ruzouq, R., Shanableh, A.: Macro and micro geo-spatial environment consideration for landfill site selection in Sharjah, United Arab Emirates, pp. 1–15 (2018)

    Google Scholar 

  23. Al-ruzouq, R., Shanableh, A., Merabtene, T., et al.: Potential Groundwater Zone Mapping Based on Geo-Hydrological Considerations and Multi-Criteria Spatial Analysis : North UAE, pp. 1–40 (2019)

    Google Scholar 

  24. Sherif, M.M., Ebraheem, A.M., Al Mulla, M.M., Shetty, A.V.: New system for the assessment of annual groundwater recharge from rainfall in the United Arab Emirates. Environ. Earth Sci. 77,(2018). https://doi.org/10.1007/s12665-018-7591-3

  25. Saif, A., Matri, A.: Assessment of Artificial Groundwater Recharge in Some Wadies in UAE by using Isotope Hydrology Techniques (2008)

    Google Scholar 

  26. Rais, S., Javed, A.: Identification of Artificial Recharge Sites in Manchi Basin, Eastern Rajasthan (India) Using Remote Sensing and GIS Techniques, pp. 162–175 (2014)

    Google Scholar 

  27. Alrehaili, A.M., Hussein, M.T.: Use of remote sensing, GIS and groundwater monitoring to estimate artificial groundwater recharge in Riyadh, Saudi Arabia. Arab. J. Geosci. 5, 1367–1377 (2012). https://doi.org/10.1007/s12517-011-0306-7

    Article  Google Scholar 

  28. Chowdary, V.M.: Delineation of groundwater recharge zones and identification of artificial recharge sites in West Medinipur district, West Bengal, using RS, GIS and MCDM techniques, pp. 1209–1222 (2010). https://doi.org/10.1007/s12665-009-0110-9

  29. Senanayake, I.P., Dissanayake, D.M.D.O.K., Mayadunna, B.B., Weerasekera, W.L.: Geoscience Frontiers an approach to delineate groundwater recharge potential sites in Ambalantota, Sri Lanka using GIS techniques. Geosci. Front. 7, 115–124 (2016). https://doi.org/10.1016/j.gsf.2015.03.002

    Article  Google Scholar 

  30. Nasiri, H., Boloorani, A.D., Sabokbar, H.A.F., et al.: Determining the most suitable areas for artificial groundwater recharge via an integrated PROMETHEE II-AHP method in GIS environment (case study: Garabaygan Basin, Iran). Environ. Monit. Assess. 185, 707–718 (2013). https://doi.org/10.1007/s10661-012-2586-0

    Article  Google Scholar 

  31. Kazakis, N.: Delineation of suitable zones for the application of Managed Aquifer Recharge (MAR) in coastal aquifers using quantitative parameters and the analytical hierarchy process. Water (Switzerland) 10,(2018). https://doi.org/10.3390/w10060804

  32. Hammouri, N., Al-Amoush, H., Al-Raggad, M., Harahsheh, S.: Groundwater recharge zones mapping using GIS: a case study in Southern part of Jordan Valley, Jordan. Arab. J. Geosci. 7, 2815–2829 (2014). https://doi.org/10.1007/s12517-013-0995-1

    Article  Google Scholar 

  33. Agarwal, R., Garg, P.K.: Remote sensing and GIS based groundwater potential & recharge zones mapping using multi-criteria decision making technique. Water Resour. Manage. 30, 243–260 (2016). https://doi.org/10.1007/s11269-015-1159-8

    Article  Google Scholar 

  34. Rukundo, E., DoÄŸan, A.: Dominant influencing factors of groundwater recharge spatial patterns in Ergene river catchment, Turkey. Water (Switzerland) 11 (2019). https://doi.org/10.3390/w11040653

  35. da Costa, A.M., de Salis, H.H.C., Viana, J.H.M., Pacheco, F.A.L.: Groundwater recharge potential for sustainable water use in urban areas of the Jequitiba River Basin. Brazil. Sustain. 11,(2019). https://doi.org/10.3390/su11102955

  36. Mahmoud, S.H., Alazba, A.A.: Identification of potential sites for groundwater recharge using a GIS-based decision support system in Jazan region-Saudi Arabia. Water Resour. Manage. 28, 3319–3340 (2014). https://doi.org/10.1007/s11269-014-0681-4

    Article  Google Scholar 

  37. Sharma, C.S.: Artificial groundwater recharge zones mapping using remote sensing and GIS : a case study in Indian Punjab 61–71 (2013). https://doi.org/10.1007/s00267-013-0101-1

  38. Mahdavi, A., Tabatabaei, S.H., Mahdavi, R., Nouri Emamzadei, M.R.: Application of digital techniques to identify aquifer artificial recharge sites in GIS environment. Int. J. Digit. Earth 6, 589–609 (2013). https://doi.org/10.1080/17538947.2011.638937

    Article  Google Scholar 

  39. Ahmadi, M.M., Mahdavirad, H., Bakhtiari, B.: Multi-criteria analysis of site selection for groundwater recharge with treated municipal wastewater. Water Sci. Technol. 76, 909–919 (2017). https://doi.org/10.2166/wst.2017.273

    Article  Google Scholar 

  40. Rahman, M.A., Rusteberg, B., Gogu, R.C., et al.: A new spatial multi-criteria decision support tool for site selection for implementation of managed aquifer recharge. J. Environ. Manage. 99, 61–75 (2012). https://doi.org/10.1016/j.jenvman.2012.01.003

    Article  Google Scholar 

  41. Chenini, I., Ben, M.A., El, M.M.: Groundwater recharge zone mapping using GIS-based multi-criteria analysis: A case study in Central Tunisia (Maknassy Basin). Water Resour. Manage. 24, 921–939 (2010). https://doi.org/10.1007/s11269-009-9479-1

    Article  Google Scholar 

  42. Chezgi, J., Pourghasemi, H.R., Naghibi, S.A., et al.: Assessment of a spatial multi-criteria evaluation to site selection underground dams in the Alborz Province. Iran. Geocarto. Int. 31, 628–646 (2016). https://doi.org/10.1080/10106049.2015.1073366

    Article  Google Scholar 

  43. Norouzi, H., Shahmohammadi-Kalalagh, S.: Locating groundwater artificial recharge sites using random forest: a case study of Shabestar region. Iran. Environ. Earth Sci. 78, 1–11 (2019). https://doi.org/10.1007/s12665-019-8381-2

    Article  Google Scholar 

  44. Saaty, T.L.: How to make a decision: the analytic hierarchy process. Eur. J. Oper. Res. 48, 9–26 (1990). https://doi.org/10.1016/0377-2217(90)90057-I

    Article  MATH  Google Scholar 

  45. Al-Ruzouq, R., Shanableh, A., Merabtene, T., et al.: Potential groundwater zone mapping based on geo-hydrological considerations and multi-criteria spatial analysis: North UAE. CATENA 173, 511–524 (2019). https://doi.org/10.1016/j.catena.2018.10.037

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rami Al-Ruzouq .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Al-Ruzouq, R., Shanableh, A., Yilmaz, A.G., Mukherjee, S., Khalil, M.A. (2023). Analytical Hierarchical Processing to Delineate Artificial Groundwater Recharge Zones. In: Grueau, C., Laurini, R., Ragia, L. (eds) Geographical Information Systems Theory, Applications and Management. GISTAM GISTAM 2021 2022. Communications in Computer and Information Science, vol 1908. Springer, Cham. https://doi.org/10.1007/978-3-031-44112-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44112-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44111-0

  • Online ISBN: 978-3-031-44112-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics