Skip to main content

Regularized Weight Aggregation in Networked Federated Learning for Glioblastoma Segmentation

  • Conference paper
  • First Online:
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (BrainLes 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14092))

Included in the following conference series:

  • 222 Accesses

Abstract

In federated learning (FL), the global model at the server requires an efficient mechanism for weight aggregation and a systematic strategy for collaboration selection to manage and optimize communication payload. We introduce a practical and cost-efficient method for regularized weight aggregation and propose a laborsaving technique to select collaborators per round. We illustrate the performance of our method, regularized similarity weight aggregation (RegSimAgg), on the Federated Tumor Segmentation (FeTS) 2022 challenge’s federated training (weight aggregation) problem. Our scalable approach is principled, frugal, and suitable for heterogeneous non-IID collaborators. Using FeTS2021 evaluation criterion, our proposed algorithm RegSimAgg stands at 3rd position in the final rankings of FeTS2022 challenge in the weight aggregation task. Our solution is open sourced at: https://github.com/dskhanirfan/FeTS2022.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Annas, G.J.: HIPAA regulations-a new era of medical—record privacy? (2003)

    Google Scholar 

  2. Baid, U., et al.: The RSNA-ASNR-MICCAI BraTS 2021 benchmark on brain tumor segmentation and radiogenomic classification. arXiv preprint arXiv:2107.02314 (2021)

  3. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection. The cancer imaging archive. Nat. Sci. Data 4, 170117 (2017)

    Google Scholar 

  4. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection. The cancer imaging archive 286 (2017)

    Google Scholar 

  5. Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4(1), 1–13 (2017)

    Article  Google Scholar 

  6. Bernecker, T., et al.: FedNorm: modality-based normalization in federated learning for multi-modal liver segmentation. arXiv preprint arXiv:2205.11096 (2022)

  7. Kairouz, P., et al.: Advances and open problems in federated learning (2019). https://arxiv.org/abs/1912.04977

  8. Khan, M.I., Jafaritadi, M., Alhoniemi, E., Kontio, E., Khan, S.A.: Adaptive weight aggregation in federated learning for brain tumor segmentation. In: Crimi, A., Bakas, S. (eds.) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, pp. 455–469. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-09002-8_40

    Chapter  Google Scholar 

  9. Li, Q., He, B., Song, D.: Model-contrastive federated learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10713–10722 (2021)

    Google Scholar 

  10. Li, T., Sahu, A.K., Zaheer, M., Sanjabi, M., Talwalkar, A., Smith, V.: Federated optimization in heterogeneous networks. arXiv preprint arXiv:1812.06127 (2018)

  11. Li, W., et al.: Privacy-preserving federated brain tumour segmentation. In: Suk, H.-I., Liu, M., Yan, P., Lian, C. (eds.) MLMI 2019. LNCS, vol. 11861, pp. 133–141. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32692-0_16

    Chapter  Google Scholar 

  12. Liu, D., et al.: MS lesion segmentation: revisiting weighting mechanisms for federated learning. arXiv preprint arXiv:2205.01509 (2022)

  13. Liu, Q., Chen, C., Qin, J., Dou, Q., Heng, P.A.: FedDG: federated domain generalization on medical image segmentation via episodic learning in continuous frequency space. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1013–1023 (2021)

    Google Scholar 

  14. McMahan, B., Moore, E., Ramage, D., Hampson, S., Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics, pp. 1273–1282. PMLR (2017)

    Google Scholar 

  15. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2014)

    Article  Google Scholar 

  16. Pati, S., et al.: Federated learning enables big data for rare cancer boundary detection. arXiv preprint arXiv:2204.10836 (2022)

  17. Pati, S., et al.: The federated tumor segmentation (FeTS) challenge. arXiv preprint arXiv:2105.05874 (2021)

  18. Reina, G.A., et al.: OpenFL: an open-source framework for federated learning. arXiv preprint arXiv:2105.06413 (2021)

  19. Sarma, K.V., et al.: Federated learning improves site performance in multicenter deep learning without data sharing. J. Am. Med. Inform. Assoc. 28(6), 1259–1264 (2021)

    Google Scholar 

  20. Voigt, P., Von dem Bussche, A.: The EU general data protection regulation (GDPR). A Practical Guide, 1st Edn. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57959-7

  21. Wicaksana, J., et al.: FedMix: mixed supervised federated learning for medical image segmentation. arXiv preprint arXiv:2205.01840 (2022)

  22. Xia, Y., et al.: Auto-FedAvg: learnable federated averaging for multi-institutional medical image segmentation. arXiv preprint arXiv:2104.10195 (2021)

  23. Xu, J., Glicksberg, B.S., Su, C., Walker, P., Bian, J., Wang, F.: Federated learning for healthcare informatics. J. Healthcare Inf. Res. 5(1), 1–19 (2021)

    Article  Google Scholar 

  24. Xu, X., et al.: Federated cross learning for medical image segmentation. arXiv preprint arXiv:2204.02450 (2022)

  25. Yan, Z., Wicaksana, J., Wang, Z., Yang, X., Cheng, K.T.: Variation-aware federated learning with multi-source decentralized medical image data. IEEE J. Biomed. Health Inform. 25(7), 2615–2628 (2020)

    Article  Google Scholar 

  26. Zhao, Y., Li, M., Lai, L., Suda, N., Civin, D., Chandra, V.: Federated learning with non-IID data. arXiv preprint arXiv:1806.00582 (2018)

Download references

Acknowledgements

This work was supported by the Business Finland under Grant 33961/31/2020. We also acknowledge the support and computational resources facilitated by the CSC-Puhti super-computer, a non-profit state enterprise owned by the Finnish state and higher education institutions in Finland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Irfan Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khan, M.I., Azeem, M.A., Alhoniemi, E., Kontio, E., Khan, S.A., Jafaritadi, M. (2023). Regularized Weight Aggregation in Networked Federated Learning for Glioblastoma Segmentation. In: Bakas, S., et al. Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2022. Lecture Notes in Computer Science, vol 14092. Springer, Cham. https://doi.org/10.1007/978-3-031-44153-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44153-0_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44152-3

  • Online ISBN: 978-3-031-44153-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics