Abstract
In federated learning (FL), the global model at the server requires an efficient mechanism for weight aggregation and a systematic strategy for collaboration selection to manage and optimize communication payload. We introduce a practical and cost-efficient method for regularized weight aggregation and propose a laborsaving technique to select collaborators per round. We illustrate the performance of our method, regularized similarity weight aggregation (RegSimAgg), on the Federated Tumor Segmentation (FeTS) 2022 challenge’s federated training (weight aggregation) problem. Our scalable approach is principled, frugal, and suitable for heterogeneous non-IID collaborators. Using FeTS2021 evaluation criterion, our proposed algorithm RegSimAgg stands at 3rd position in the final rankings of FeTS2022 challenge in the weight aggregation task. Our solution is open sourced at: https://github.com/dskhanirfan/FeTS2022.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Annas, G.J.: HIPAA regulations-a new era of medical—record privacy? (2003)
Baid, U., et al.: The RSNA-ASNR-MICCAI BraTS 2021 benchmark on brain tumor segmentation and radiogenomic classification. arXiv preprint arXiv:2107.02314 (2021)
Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection. The cancer imaging archive. Nat. Sci. Data 4, 170117 (2017)
Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection. The cancer imaging archive 286 (2017)
Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4(1), 1–13 (2017)
Bernecker, T., et al.: FedNorm: modality-based normalization in federated learning for multi-modal liver segmentation. arXiv preprint arXiv:2205.11096 (2022)
Kairouz, P., et al.: Advances and open problems in federated learning (2019). https://arxiv.org/abs/1912.04977
Khan, M.I., Jafaritadi, M., Alhoniemi, E., Kontio, E., Khan, S.A.: Adaptive weight aggregation in federated learning for brain tumor segmentation. In: Crimi, A., Bakas, S. (eds.) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, pp. 455–469. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-09002-8_40
Li, Q., He, B., Song, D.: Model-contrastive federated learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10713–10722 (2021)
Li, T., Sahu, A.K., Zaheer, M., Sanjabi, M., Talwalkar, A., Smith, V.: Federated optimization in heterogeneous networks. arXiv preprint arXiv:1812.06127 (2018)
Li, W., et al.: Privacy-preserving federated brain tumour segmentation. In: Suk, H.-I., Liu, M., Yan, P., Lian, C. (eds.) MLMI 2019. LNCS, vol. 11861, pp. 133–141. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32692-0_16
Liu, D., et al.: MS lesion segmentation: revisiting weighting mechanisms for federated learning. arXiv preprint arXiv:2205.01509 (2022)
Liu, Q., Chen, C., Qin, J., Dou, Q., Heng, P.A.: FedDG: federated domain generalization on medical image segmentation via episodic learning in continuous frequency space. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1013–1023 (2021)
McMahan, B., Moore, E., Ramage, D., Hampson, S., Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics, pp. 1273–1282. PMLR (2017)
Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2014)
Pati, S., et al.: Federated learning enables big data for rare cancer boundary detection. arXiv preprint arXiv:2204.10836 (2022)
Pati, S., et al.: The federated tumor segmentation (FeTS) challenge. arXiv preprint arXiv:2105.05874 (2021)
Reina, G.A., et al.: OpenFL: an open-source framework for federated learning. arXiv preprint arXiv:2105.06413 (2021)
Sarma, K.V., et al.: Federated learning improves site performance in multicenter deep learning without data sharing. J. Am. Med. Inform. Assoc. 28(6), 1259–1264 (2021)
Voigt, P., Von dem Bussche, A.: The EU general data protection regulation (GDPR). A Practical Guide, 1st Edn. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57959-7
Wicaksana, J., et al.: FedMix: mixed supervised federated learning for medical image segmentation. arXiv preprint arXiv:2205.01840 (2022)
Xia, Y., et al.: Auto-FedAvg: learnable federated averaging for multi-institutional medical image segmentation. arXiv preprint arXiv:2104.10195 (2021)
Xu, J., Glicksberg, B.S., Su, C., Walker, P., Bian, J., Wang, F.: Federated learning for healthcare informatics. J. Healthcare Inf. Res. 5(1), 1–19 (2021)
Xu, X., et al.: Federated cross learning for medical image segmentation. arXiv preprint arXiv:2204.02450 (2022)
Yan, Z., Wicaksana, J., Wang, Z., Yang, X., Cheng, K.T.: Variation-aware federated learning with multi-source decentralized medical image data. IEEE J. Biomed. Health Inform. 25(7), 2615–2628 (2020)
Zhao, Y., Li, M., Lai, L., Suda, N., Civin, D., Chandra, V.: Federated learning with non-IID data. arXiv preprint arXiv:1806.00582 (2018)
Acknowledgements
This work was supported by the Business Finland under Grant 33961/31/2020. We also acknowledge the support and computational resources facilitated by the CSC-Puhti super-computer, a non-profit state enterprise owned by the Finnish state and higher education institutions in Finland.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Khan, M.I., Azeem, M.A., Alhoniemi, E., Kontio, E., Khan, S.A., Jafaritadi, M. (2023). Regularized Weight Aggregation in Networked Federated Learning for Glioblastoma Segmentation. In: Bakas, S., et al. Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2022. Lecture Notes in Computer Science, vol 14092. Springer, Cham. https://doi.org/10.1007/978-3-031-44153-0_12
Download citation
DOI: https://doi.org/10.1007/978-3-031-44153-0_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-44152-3
Online ISBN: 978-3-031-44153-0
eBook Packages: Computer ScienceComputer Science (R0)